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Abstract. CuI-catalyzed selective Ullmann C–O coupling of 1,4-disubstituted 1,2,3-triazole bromides with
phenols were achieved through the coordination of N(2) atom. The ortho C–Br bond in N(1) aryl can be
selectively coupled with phenols, while other C–Br bonds remain inert, generating ortho aryloxyl 1,4-diaryl
1,2,3-triazoles.
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1. Introduction

The diaryl ether motif is found in numerous bioactive
natural products, such as the antitumor riccardin C (A
in Figure 1),1 the hormone thyroxin (B in Figure 1),2

and the antibiotic piperazinomycin (C in Figure 1),3 as
well as in non-natural useful agrochemicals, such as
resveratrol analogues of D and E (Figure 1) possess-
ing phytoalexin biological activities.4 Owing to their
wide applications in life and materials sciences, diaryl
ethers have thus attracted much attention from organic
chemists and the most applied and universal methods
remain metal-mediated cross-couplings of aryl halides
with phenols.5 Pioneered by Ullmann, such coupling
reactions have undergone a major improvement with the
discovery of adequate and versatile Pd-6 and Cu-based7

catalytic systems. Since then, much work has focused
on enriching the pool of the coupling partners. Though
the nucleophilic components have been widely devel-
oped and mainly include a variety of carbon, nitrogen,
oxygen, and sulfur sources with a variety of chemical
environments,8 reports on the electrophilic substrates
are extremely rare. It is clear that the development of
new electrophilic substrates for Ullmann reaction is
highly desirable.

Meanwhile, with the development of Sharpless’s
highly efficient Cu-catalyzed 1,3-diplar cycloaddition
of terminal alkyne with azide, various 1,2,3-triazole
derivatives including mono-,9 di-,10 and tri-11 substi-
tuted molecules were thus constructed, which greatly

∗For correspondence

promoted the progress of its application, especially
in biological and material fields.12 However, most
methodologies still met some troubles for the prepa-
ration of target molecules with complicated structures.
Recently, direct modification of 1,2,3-triazoles emerges
as a beautiful means for the construction of vari-
ous 1,2,3-triazoles, especially with complicated frag-
ments. Kuang group explored various modifications of
2-monosubstituted 1,2,3-triazoles including halogena-
tion, arylation, alkoxylation, acylation, and acyloxy-
lation, generating corresponding functionalized target
molecules.13 The acyloxylation and akenylation of 1,4-
disubstituted 1,2,3-triazoles were also explored by Wu,
Liu, and Correa groups,14 and the substrates were
mainly limited to 1-benzyl or 1-alkyl 1,2,3-triazoles
which were favored for the coupling process involv-
ing electronic and steric aspects. In all of above mod-
ifications, it is N(3) of the 1,2,3-triazole ring which
served as the donor atom to the catalyst center. For
some unknown reasons, there is no report about selec-
tive ortho aryloxylation on 1-aryl in 1,4-diaryl 1,2,3-
triazoles directed by N(2) of heterocycle, generating
diaryl ether motif. Notably, some 1,2,3-triazole deriva-
tives bearing diaryl ether motif, like D and E in
Figure 1, possess good cytotoxic/antiproliferative
effects.4

Herein, we would like to report an efficient, selec-
tive Ullmann C–O coupling reaction of 1,4-diaryl 1,2,3-
triazole bromides, in which the ortho C–Br bond in
N(1) aryl could be selectively aryloxylated while other
C–Br bonds remain inert, probably owing to the coor-
dination of the N(2) atom in the 1,2,3-triazole ring.
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2. Experimental

2.1 Materials and Methods

All commercially available reagents and solvents were pur-
chased (Aladdin and Bokachem, China) and used without
further purification. 1H NMR and 13C NMR spectra were
recorded using a Bruker AM-400 MHz spectrometer. Che-
mical shifts are reported relative to internal tetramethylsilane
(0.00 ppm) for 1H, and CDCl3 (77.0 ppm) for 13C. High reso-
lution mass spectra were obtained using a Finnigan-NAT
GC/MS/DS 8430 spectrometer. Flash column chromatogra-
phy was performed on 300–400 mesh silica gel.

2.2 General synthetic procedures

1,4-Diaryl 1,2,3-triazole 1 (0.3 mmol), phenol 2 (0.33 mmol),
CuI (0.03 mmol), X-Phos (0.06 mmol), K3PO4 (0.6 mmol),
and PhMe (2 mL) were added to a 15 mL pressure tube. Then
the tube was sealed with a teflon screw cap and stirred at 100◦C
for 24 h. After consumption of 1,4-diaryl 1,2,3-triazole 1
(monitored by TLC analysis), the mixture was added to H2O
(15 mL) and extracted with EtOAc (3 × 15 mL). The com-
bined organic layer was washed with brine (3 × 5 mL), dried
over Na2SO4 and concentrated under reduced pressure to
afford a crude product. Purification by column chromatogra-
phy on silica gel afforded the desired product 3.

Figure 1. Bioactive structures bearing diaryl ether.

Table 1. Optimization of reaction conditions.a

Entry Catalyst Base Ligand Solvent Temp. (◦C) 3a (%)b

1 Pd2(dba)3 K3PO4 X-Phos PhMe 100 57
2 CuI K3PO4 X-Phos PhMe 100 86
3 CuCl K3PO4 X-Phos PhMe 100 65
4 CuBr K3PO4 X-Phos PhMe 100 81
5 CuI K2CO3 X-Phos PhMe 100 78
6 CuI Cs2CO3 X-Phos PhMe 100 60
7 CuI K2H PO4 X-Phos PhMe 100 66
8 CuI K3PO4 S-Phos PhMe 100 56
9 CuI – – PhMe 100 33
10 CuI K3PO4 X-Phos DMF 100 40
11 CuI K3PO4 X-Phos CH3CN 100
12 CuI K3PO4 X-Phos DMSO 100 13
13 CuI K3PO4 X-Phos PhMe 90 45
14 CuI K3PO4 X-Phos PhMe 110 78
15c CuI K3PO4 X-Phos PhMe 100 81
16d CuI K3PO4 X-Phos PhMe 100 81
aUnless otherwise noted, the reaction conditions are as follows: 1,2,3-triazole bromide
1a (0.3 mmol), phenol 2a (0.33 mmol), catalyst (0.03 mmol), base (0.6 mmol), ligand
(0.06 mmol), and solvent (2 mL). bIsolated yield. cCuI (0.015 mmol) and X-Phos
(0.03 mmol) were used. dCuI (0.06 mmol) and X-Phos (0.12 mmol).
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3. Results and Discussion

In our initial study, 1-(2-bromine phenyl)-4-phenyl-
1,2,3-triazole (1a) and phenol (2a) were chosen as
model substrates for optimization of the reaction
conditions. We investigated the effects of catalyst, base,
ligand, solvent and temperature, as summarized in
Table 1. A moderate 57% yield of the product 4-phenyl-1-
(2-(2-phenoxyphenyl)-1H -1,2,3-triazole 3a was obtained
when the reaction was catalyzed by Pd2(dba)3 (0.1
equiv.), using K3PO4 (2 equiv.) as the base, and 2-
(dicyclohexylphosphino)-2′,4′,6′-triisopropylbiphenyl
(X-Phos) (0.2 equiv.) as the ligand in solvent of PhMe
under 100◦C (Table 1, entry 1). After some tests
on palladium catalysts, we focused our attention on
cuprous salts. To our delight, an excellent 86% yield
was reached if inexpensive CuI was used as the catalyst
instead of Pd2(dba)3 (Table 1, entry 2). Other cuprous
salts such as CuCl and CuBr are not so efficient for
this reaction (Table 1, entries 3–4). Further, screening
of bases showed that K3PO4 is the best choice as only
lower yields could be obtained when K2CO3, Cs2CO3,
or K2HPO4 was chosen for the system (Table 1,
entries 5–7). The ligands also played important roles
in this Ullmann C–O coupling reaction. The yield
decreased to 56% when 2-dicyclohexylphosphino-
2′,6′-dimethoxybiphenyl (S-Phos) was used instead of
X-Phos and only 33% yield could be obtained in the
absence of ligand (Table 1, entries 8–9). We found that
the solvents such as DMF, CH3CN, and DMSO were
substantially less effective and no target molecules
were detected in the system involved CH3CN, in which
the starting materials could be recovered (Table 1,
entries 10–12). The yield did not improve when we
adjusted the temperature to a lower 90◦C or a higher
110◦C, respectively (Table 1, entries 13–14). 0.1 Equiv-
alent of CuI seems essential for this selective C–O
coupling as the yields reduced to 81% when 5% mmol
CuI was used instead, and more CuI loading seemed
unnecessary (Table 1, entries 15–16).

Under the optimized conditions (CuI, X-Phos,
K3PO4, PhMe, 100◦C, 24 h), the selective C–O cou-
pling reactions were carried out with a range of 1,4-
diaryl 1,2,3-triazole bromide 1 and phenol 2, generating
good to excellent yields. As shown in Table 2, phenols
bearing various groups on its ortho, meta, or para posi-
tion could all serve as good partners. The coupling of
1,2,3-triazole substrates containing –CH3, –F, or –Br
substituent on its 1- and 4-aryl could all go smoothly. It
was observed that substituents on both phenol and tri-
azole partners played a distinguishing influence on the
reaction. Electron donating substituents are beneficial
to this C–O coupling, leading good to excellent yields

Table 2. N(2)-coordinated C–O coupling of 1,4-diaryl
1,2,3-triazole bromides.a,b

aReaction conditions: 1,4-diaryl 1,2,3-triazole 1 (0.3 mmol),
phenol 2 (0.33 mmol), CuI (0.03 mmol), X-Phos (0.06 mmol),
K3PO4 (0.6 mmol), and PhMe (2 mL) were mixed and stirred
at 100◦C for 24 h. bIsolated yield.

and electron withdrawing groups are unfavorable to this
reaction (Table 2, 3c and 3d vs 3e, 3g and 3h vs 3i, 3j vs
3k). Steric hindrance also affects this reaction remark-
ably. Phenols bearing ortho substituent, especially tert-
butyl, only generated lower yields (Table 2, 3b and



292 Yaowen Liu et al.

3f vs 3a). The yields of the reactions of the 1,2,3-
triazoles without ortho substituent could offer higher
yields compared to the substrates bearing a −F or –CH3

group adjacent to the triazole ring (Table 2, 3j and 3p).
It should be noted that heterocyclic rings like pyridyl
and thiazolyl were tolerated in the system and good
yields were also obtained (Table 2, 3l and 3m). It is
worth noting that substituent of −Br on meta or para
position in the substrates was found to be perfectly com-
patible, which was probably owing to the effect of N(2)
coordination of the 1,2,3-triazole ring (Table 2, 3n–p).
We also checked the reaction of 1,2,3-triazole chloride
under the optimized conditions and coupling products
were not detected, probably owing to the lower reaction
activity of C–Cl bond compared to C–Br bond.

To evaluate role of the N(2) coordination of the
1,2,3-triazole ring, we carried out the reactions of phe-
nol 2a and some aryl bromides with comparable steric
effect and electronic property while the coordination
site is absent, such as 2-bromo-1,1′-biphenyl 4a and 1-
(2-bromophenyl)-1H -pyrrole 4b as shown in Scheme 1
(reactions a and b). After the reactions were conducted
under 100◦C for 24 h, no coupled molecules of 5a and
5b were detected and the substrates 4a and 4b could be
recovered. This result explained that the C–Br bond adja-
cent to the bulky groups could not react with phenol
smoothly without the coordination effect of 1,2,3-triazole
ring under the optimized conditions, which indicated
that the N(2) coordination of the 1,2,3-triazole ring
played an important role in this cross-coupling system.

(a)

(b)

Scheme 1. Experiments on coupling reactions.

Scheme 2. Proposed mechanism.
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Based on our coupling results and literature
reports,5d,15 a possible Cu(I) / Cu(III) cycle is proposed,
as shown in Scheme 1. Coordination of the N(2) in
1,2,3-triazole 1a to the Cu(I) center of the active cata-
lyst I, through a ligand exchange process, afforded the
1,2,3-triazole coordinated Cu(I) intermediate II, which
then underwent intramolecular oxidative addition of the
ortho C–Br bond to the Cu center, producing Cu(III)
intermediate III. Subsequent ligand exchange occurred
between phenol and halogen in the presence of base,
generating aryloxyl-Cu(III)-triazole species IV. Finally,
the desired product 3a was formed through reductive
elimination of IV, and the active catalyst I was released
simultaneously (Scheme 2).

4. Conclusions

In conclusion, we have demonstrated CuI-catalyzed
regioselective Ullmann C–O coupling of 1,4-diaryl
1,2,3-triazole bromide with phenol. The N(2) of the
1,2,3-triazole ring served as the coordinating atom and
controlled the ortho selectivity. It provides a quick
access to ortho aryl in 1,4-diaryl 1,2,3-triazoles, which
are widely used in biological and material fields.

Supplementary Information (SI)

Experimental procedures, characterization data and all the
NMR spectra are available at www.ias.ac.in/chemsci.
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