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Abstract. Multidrug resistance in Mycobacterium tuberculosis (M. Tb) and its coexistence with HIV are
the biggest therapeutic challenges in anti-M. Tb drug discovery. The current study reports a Virtual Screen-
ing (VS) strategy to identify potential inhibitors of Mycobacterial cyclopropane synthase (CmaA1), an impor-
tant M. Tb target considering the above challenges. Five ligand-based pharmacophore models were generated
from 40 different conformations of the cofactors of CmaA1 taken from molecular dynamics (MD) simulations
trajectories of CmaA1. The screening abilities of these models were validated by screening 23 inhibitors and
1398 non-inhibitors of CmaA1. A VS protocol was designed with four levels of screening i.e., ligand-based
pharmacophore screening, structure-based pharmacophore screening, docking and absorption, distribution,
metabolism, excretion and the toxicity (ADMET) filters. In an attempt towards repurposing the existing drugs
to inhibit CmaA1, 6,429 drugs reported in DrugBank were considered for screening. To find compounds that
inhibit multiple targets of M. Tb as well as HIV, we also chose 701 and 11,109 compounds showing activity
below 1 μM range on M. Tb and HIV cell lines, respectively, collected from ChEMBL database. Thus, a total
of 18,239 compounds were screened against CmaA1, and 12 compounds were identified as potential hits for
CmaA1 at the end of the fourth step. Detailed analysis of the structures revealed these compounds to interact
with key active site residues of CmaA1.

Keywords. Virtual screening; pharmacophore model; docking; tuberculosis; HIV; ADMET filters;
drug repositioning; poly-pharmacology.

1. Introduction

Recent studies suggest that over two billion people,
which is approximately one-third of the world popula-
tion are infected with M. Tb1,2 highlighting the enormous
healthcare challenges particularly for the developing
countries. According to the ‘global tuberculosis report
2014’ by the World Health Organization (WHO), there
were about 9.0 million incidences of tuberculosis (TB)
in 2013.3 It is important to note that out of 1.5 mil-
lion fatalities caused by this deadly disease, 0.36 mil-
lion people were HIV positive.3 Treatment of TB for
HIV infected patients is very complicated due to the
incompatibilities of the currently available HIV and TB
drugs.4 Hence, molecules that are able to inhibit mul-
tiple M. Tb targets as well as simultaneously act on
both M. Tb and HIV are required to address the thera-
peutic challenges like drug resistance and coexistence
with HIV. New targets and drug candidates are being
explored by researchers across the globe to fulfill the
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urgent need of new drugs for TB.5–7 These emerging
targets include GlgE, enzymes involving mycolic acid
cyclopropanation, DprE1/DprE2, MshC, HisG, AtpE,
Def and methionine amino peptidase, etc., which are
crucial for the actively growing mycobacteria. Few
new chemical entities such as dioctylamine, benzoth-
iazinone, dinitrobenzamides, dequalinium chloride,
nitrobenzothiazole, diarylquinoline, TMC207, LBK-
611 and 2,3-dichloro-1,4-naphthoquinones are in clini-
cal trials.8 However, the new drug discovery strategies
should include multidisciplinary approaches to identify
and understand the structure and dynamic behavior of
the potential drug targets.

Mycobacterial cyclopropane synthase (CmaA1) is
one of the potential anti-TB drug targets, which is
responsible for the maturation of mycolic acids by
cyclopropanation, thus contributing towards the per-
sistence and virulence of M. Tb. Our previous stud-
ies reported the conformational changes in the active
sites of CmaA1 during the cyclopropanation reactions
by performing molecular dynamics (MD) simulations
on five model systems that represent different catalytic
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stages of the enzyme.9 The diverse conformational
space of the active site residues of CmaA1 at various
stages of the cyclopropanation using MD simulations,
observed from this study prompted us to use this flex-
ibility of CmaA1 active site in drug design. We gen-
erated dynamic structure-based pharmacophore models
from the snapshots obtained from the MD trajectories
of CmaA1 and compared their abilities to screen
active inhibitors with that of the crystal structure-based
model.10 It has been demonstrated that the pharma-
cophore models generated from the snapshots of the
MD trajectory are much more efficient than the one gen-
erated from the single crystal structure. In this study, we
present an effective strategy based on the development
and validation of dynamic ligand-based pharmacophore
models followed by virtual screening.

Considering the immediate need of new therapeu-
tic agents to treat tuberculosis, we are interested to
screen the existing drugs against CmaA1 inspired by
the concept of ‘Drug repurposing/Drug repositioning’,
wherein we look for new indications for the existing
drugs. This is a less expensive and less time consuming
process as well, due to the availability of the phar-
macokinetic, toxicology and safety data. For screening
purposes, the DrugBank11 is taken as the first dataset in
this study, especially considering the fact that the drug
repurposing is emerging as one of the most promis-
ing strategies in drug discovery.12,13 (ChEMBL-MTb)
which consists of all compounds, experimentally proven
as inhibitors of any one M. Tb target reported in the
ChEMBL database,14 is considered as the second
dataset to be screened against CmaA1. The compounds
that can inhibit multiple targets can more effectively
combat drug resistance by mutation.15 A third dataset
(ChEMBL-HIV) comprising all compounds, which are
highly active against HIV was considered for screening
to identify compounds that are able to bind and inhibit
targets of both M. Tb and HIV. Therefore, these three
datasets were considered in the study based on their
drug-like nature, or activity against M. Tb or HIV.

Along with effective strategies for anti-TB drug dis-
covery considering the resistance and coincidence with
HIV, reliabilities of the techniques used during the pro-
cess play a crucial role. In recent years, technological
advances in computational methodologies like struc-
ture and ligand-based pharmacophore screening,16–19

docking,20 2D and 3D quantitative structure activity
relationship (QSAR) modeling,21 etc., have offered
medicinal chemists fast and cost-effective alternatives
to the traditional high throughput screening to screen
drug libraries against therapeutic targets. Considera-
tion of the receptor flexibility using MD simulations
in the VS methods and MD-based descriptors such as

MM-GBSA/PBSA energies as molecular descriptors
add great value to the accuracy of inhibitor prediction.22,23

At the same time, all these methodologies have their
own limitations as they are based on many approxima-
tions or demand very high computational power. For
example, in QSAR modeling, we may generate large
number of models to predict the activities, but it is very
challenging to choose the right types of descriptors.24

Most of the docking methods calculate interaction ener-
gies and free energies of binding by empirical methods,
and they do not accurately account for the receptor flex-
ibilities and employing MD simulations, while screening
millions of compounds are computationally expensive.
Since each individual method of VS has its own limita-
tions, it is difficult to attain accuracy in the VS protocols
unless we employ different screening filters like phar-
macophore mapping, shape-based, ligand-based, chem-
ical diversity, similarity based strategies. Incorporation
of the target specific filters along with the general VS
approaches is also very crucial.25–29

In the current study, a systematic approach was
designed employing dynamic ligand and structure-
based pharmacophore screening followed by docking to
screen the compound datasets (described above) against
CmaA1. The pharmacokinetic properties like ADMET
profiles of the molecules are some of the very important
aspects to be considered while screening compounds
to avoid dismissal of the drugs in the later stages of
drug discovery.30,31 In silico prediction of these proper-
ties can rapidly analyze a set of molecules prior to syn-
thesis and help prioritizing the molecules that can then
be further investigated experimentally.32,33 So, ADMET
filters were considered as the last levels of compound
screening.

2. Computational

2.1 Generation and validation of ligand-based
pharmacophore models

Our previous studies reported MD simulations on the
following five model systems of CmaA1.9,10 E-SAM:
Holo form of CmaA1 with SAM in the cofactor bind-
ing site (CBS). E-SAM-S: Holo form with SAM in the
CBS and the substrate in the acetyl substrate binding
site (ASBS). E-SAHC-P: Holo form with SAHC in the
CBS and the cyclopropanated product in the ASBS. E-
SAHC: Holo form with SAHC in the CBS. E-SAHC-
D: Holo form with SAHC in the CBS and a CmaA1
inhibitor DDDMAB in the ASBS. These model systems
represent various catalytic states of CmaA1.9 The con-
formational heterogeneity of the cofactor as obtained
from these MD simulations was used to design dynamic
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ligand-based pharmacophores. Eight snapshots were
collected at every 5 ns interval from each of the five MD
trajectories of the five model systems of CmaA1 (total
40 snapshots). The cofactors were extracted from each
of these snapshots and average structures were gener-
ated for the extracted cofactors from each trajectory
using “General tools” module of Schrodinger Suite.34

All the cofactors extracted from one trajectory at every
5 ns were aligned to each other based on the ade-
nine and sugar parts. The root mean square deviations
(RMSD) among the snapshots extracted from a single
trajectory were found to be <2.5 Å. Since the struc-
tures were quite similar to each other, average struc-
tures were calculated using uniform weighting method.
Thus, we obtained five average structures of the cofac-
tors from the five model systems. These five average
structures of the cofactors along with the one extracted
from the static crystal structure (1KPH) were used to
generate the ligand-based pharmacophore models using
the Phase module of the Schrodinger program.35 Each
model consisted of six types of chemical features. The
number of features present in each model varied from
8 to 11. A set of 23 CmaA1 inhibitors with reported
MIC values ranging from 0.0125-12.5 μg/mL36 were
used for verifying the abilities of the ligand-based phar-
macophore models to screen active CmaA1 inhibitors
(scheme S1). All these compounds were energy mini-
mized using the default parameters of LigPrep module
of Schrodinger Suite.37 The default parameters used for
ligand preparation included the OPLS_2005 force field
and to retain the existing charge. A maximum of 10
conformations per molecule were generated during the
matching. The matching criteria were assigned as the
compounds must match at least 4 features of a model.
A set of 1398 M. Tb inactive compounds reported in
ChEMBL database (used in the previous study)10 were
found to be within the molecular weight range of 180-
400 and consisting 12 to 27 heavy atoms (similar to
that of the 23 active compounds, SAM and SAHC).
These 1398 compounds were then screened against all
e-Pharmacophore models using the same criteria to
check if these models screen any inactive compounds.

2.2 Virtual Screening

2.2a Preparation of dataset: Three sets of compounds
were used for VS against CmaA1. First one consisted
of all the 6,429 drugs (approved/illicit/withdrawn/
nutraceuticals) reported in DrugBank. 701 unique com-
pounds showing activity below 1 μM range on M. Tb
cell lines reported in ChEMBL database constituted
the second set, and 11,109 compounds showing activ-
ity below 1 μM range on various HIV cell lines were

collected from ChEMBL database as the third set.
All these 18,239 compounds were energy minimized
using the default parameters of LigPrep module of
Schrodinger Suite. The individual datasets mentioned
above are referred as ‘DrugBank’, ‘ChEMBL-Mtb’ and
‘ChEMBL-HIV’ respectively. Detailed information on
the procedure and date of downloading the compounds
and preparation of the above datasets have been given
in as List S1 of the supplementary information.

2.2b Screening: The three datasets were screened
individually to identify potential CmaA1 inhibitors
from each set. Four different levels of filters were used
for screening each of these datasets. The ligand-based
pharmacophore models were chosen as the first level
filters for VS as they have more number of features and
hence can screen diverse compounds. The ‘Advanced
Pharmacophore Screening’ protocol of Phase mod-
ule of Schrodinger suite was used to map the active
compounds with the pharmacophore models. Five con-
formations were generated for each rotatable bond in
the active compounds and upto 100 conformations per
compound were generated. Compounds those match to
a minimum of six pharmacophoric features of a ligand-
based model were allowed to get screened in. The
compounds screened by all the five ligand-based phar-
macophore models were subjected to the second level
filter. Five structure-based pharmacophore models that
have been generated and validated in our earlier study
were used as the second level of screening as they can
screen target specific compounds.10 All the screening
criteria were same as the first filter, but here thorough
conformational sampling was used and the minimum
number of pharmacophore sites the molecules must
match to be screened in was set to be 4. All the com-
pounds that could map to any four features of each of
the five structure based pharmacophore models were
subjected to the next level of screening i.e., docking.
The selected compounds were docked to the active
sites of the corresponding protein structures of the five
structure-based pharmacophore models. Compounds
having reactive functional groups were opted out before
the Glide docking.38 Glide energy grids were generated
for each snapshot to define the active site as a cubic box
of 12*12*12 Å3 around the cofactors. Docking was per-
formed in two sub-steps i.e., the simple precision (SP)
docking and an extra precision (XP) docking.39 Top
50% compound poses ranked according to Glide SP
score were subjected to Glide XP docking and top 50%
compounds ranked according to the XP scores were
retained as top hits. The common compounds in the top
25% of all the five docking results were selected for the
ADMET/Drug likeness property calculation with the
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QuickProp module of Schrodinger40 to obtain the final
hits. Further, the non-covalent interactions made by the
final hits obtained from the VS with the CBS residues
were examined to see whether these compounds can be
potential competitive inhibitors of CmaA1.

3. Results and Discussion

S-adenosyl-L-methionine (SAM) is the native cofactor
of CmaA1 which transfers a methyl group to the dou-
ble bond of the substrate during the cyclopropanation
process and converts to S-adenosyl-L-homocysteine
(SAHC) after the methyl transfer. MD simulations
on the model systems of CmaA1 in our previous
study5 revealed significant conformational changes in
the cofactors occur in order to facilitate the cyclopropa-
nation reaction. Along with the conformation, the pat-
tern and types of interactions of these cofactors with
the active site residues also showed wide diversity.
Figure 1 shows the superposition and mutual root
mean squared deviations (RMSD) of the 40 MD snap-
shots of the cofactors. The predominance of the red
color in this figure reveals the large difference in

the geometries of the cofactors in different snapshots,
especially when they are from different model systems.
Hence, it is important to include the flexibilities of
the native cofactors within the active site of CmaA1
at different stages of cyclopropanation while screening
inhibitors of CmaA1 by choosing/finding the right con-
formations that makes the ligand interact with the active
site of a protein in an optimal way is very crucial. Here,
we have tried to obtain various conformational states of
the CmaA1 cofactors SAM and SAHC at almost all cat-
alytic states of CmaA1, so that we can capture all pos-
sible orientations of the chemical features present in the
cofactors that are responsible for key interactions with
the active site. The orientations of the chemical fea-
tures, in the form of ligand-based pharmacophore mod-
els were validated by mapping the active compounds,
were used to screen the databases.

3.1 Details and validation of ligand-based
pharmacophore models

The ligand-based pharmacophore models consist of
six different chemical features, viz., hydrogen bond
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Figure 1. Superposition and root mean squared deviations (RMSD) of the 40 MD snapshots of the
cofactors (SAM/SAHC) with respect to each other.
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(H-bond) acceptor (A), H-bond donor (D), hydrophobic
sites (H), negative ionic sites (N), positive ionic sites (P)
and aromatic rings (R). D features were represented as
projected points, located at the corresponding A posi-
tions in the binding site. Projected points allow the pos-
sibility for structurally dissimilar active compounds to
form H-bonds to the same location, regardless of their
point of origin and directionality. All the ligand-based
models basically consisted of similar features except
an extra P feature for SAM and an extra H feature for
SAHC. But the inter-feature distances, spacing and ori-
entations largely vary depending on the conformation
of these cofactors in the binding pocket. The two R
features of the adenine part represent the potential of
making π-π interaction with the side chain of F142
residue of CmaA1 as observed in our previous studies.9

The adenine part also consists of two A features which
mostly interact with E124 and Y16 of CmaA1 and
one D feature that interacts with W123, the sugar part

contains two D and two A features situated on the two
–OH groups in all the models which have potential to
make H-bonds with the residues G72, G74, L95 and
Q99. The methionine part has a P feature for the ligand-
based models of E-SAM and E-SAM-S while the corre-
sponding homocysteine parts in E-SAHC, E-SAHC-D
and E-SAHC-P have H features. The terminal parts of
all the ligand-based models contain the P and N features
which interact with I136, Y33, S34 and T94. The abil-
ities of the generated models were verified by screen-
ing a set of 23 reference compounds showing CmaA1
inhibitory activities in μg/mL range as in the previous
study.10 Figure 2 shows the five ligand-based models
with the most active reference compound C1 mapped
to them.

The active compounds considered for validation of
the models are the anti-tubercular drug thiacetazone and
its clinical analogues that are shown to cause inhibition
of cyclopropanation in various mycobacterial strains

Figure 2. The most active reference compound C1 mapped with all the selected ligand-based pharma-
cophore models. Colour codes for the pharmacophoric features are as follows. Cyan: D, Pink: A, Red: N,
Blue: P, Green: H and Orange: R. Same colour code for the features is followed for all the other figures.
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Table 1. Comparison of number of inhibitors and non-inhibitors screened by the
ligand-based pharmacophore models and ranges of their fitness scores.

% of inhibitors Fitness Score % of non-inhibitors Fitness Score
Model screened Range screened Range

E-SAHC-D 65 0.68−1.15 10.2 0.25−1.04
E-SAM 96 1.65−1.90 8.1 0.26−1.29
E-SAM-S 83 0.57−1.38 0.14 0.06−1.09
E-SAHC-P 91 0.62−1.45 10.8 0.24−1.06
E-SAHC 91 0.46−1.69 12.4 0.20−1.05

by directly binding cyclopropane synthase enzymes.35

The ligand-based models were able to screen upto 22
out of the 23 active compounds. Since the number
of features present in these models were more (8-11),
they could screen more compounds when the match-
ing criteria was kept to minimum four features for
a molecule. The ligand-based model generated from
the co-crystallized SAHC from the static crystal struc-
ture was found to have features similar to those of
the dynamics-based models. But, it could screen only
four active compounds. The ligand-based models and
the reference compounds screened by them have been
shown in table S1. When the 1398 non-inhibitors of M.
Tb were screened using the five ligand-based models, it
was found that the models screen very less percentage
of non-inhibitors as compared to the inhibitors (table 1).

Table 1 also shows that the fitness scores for the
non-inhibitors are lower than those of the inhibitors,
demonstrating the ability of the models to discriminate
the inhibitors from the non-inhibitors. Hence, the five
ligand-based pharmacophore models generated from
the MD trajectories were used as the first level filters in
the VS process.

3.2 Virtual Screening

3.2a Design of the VS protocol: The literature report
several methods to screen potential compounds for
potential targets. Although the pharmacophore screen-
ing is one of the fast and cost effective techniques, it has
its own limitations which have been discussed
elsewhere.41 Similarly, other screening techniques
based on docking use severe approximations to esti-
mate the binding affinity of the ligands for a particular
protein. Also, docking-based methods do not consider
receptor flexibility to save time and computational cost.
Hence, it would be wise to design the VS protocols
employing several techniques so that all their strengths
can be exploited, as well as their limitations will be
complemented by each other. So, here we employed lig-
and and structure-based pharmacophore models incor-
porating dynamics of the receptor, docking with

multiple receptor conformation and ADMET filters for
screening the dataset of our interest. Figure 3 shows
the step by step VS process used in our study. Each
dataset was screened individually as they were consid-
ered to address three different purposes. No common
compounds were found among the datasets.

3.2b First level filter: Dynamic ligand-based pharma-
cophore screening: The first level filter used for our
study was the five ligand-based pharmacophore mod-
els. These models are based on the diverse conforma-
tions of the cofactors in the binding site of CmaA1 at
various stages of the enzyme catalysis. They have 8-
11 features and hence can screen structurally diverse
compounds satisfying the ligand-based requirements of
a CmaA1 binder. The pharmacophoric features repre-
sent the key non-covalent interactions of the cofactors
with the active site residues of CmaA1 at different cat-
alytic stages of cyclopropanation. Due to high confor-
mational difference of the cofactors at different stages,
their pattern of interaction with the active site residues
is also altered. For example, in the E-SAM stage, SAM
binding is stabilized by strong H-bonds with Ile136,
Gly137, Glu124 and Gly72. But in presence of the sub-
strate, in the E-SAM-S stage, SAM changes its con-
formation so that the CH3 group attached to the S+

of SAM tends to come closer to the C=C of the sub-
strate and due to this conformational change the pre-
vious H-bonds are lost and new H-bond are formed
with ASP70 and Thr78.9 Leu95 which was making H-
bonds with N3 and O2’ of SAM in the E-SAM sys-
tem makes H-bond with N7 of SAM in the E-SAM-S
system because of its altered orientation.9 We feel it is
very essential to consider these diverse interaction pat-
terns of the cofactors while screening compounds for
CmaA1. The three datasets were screened individually
by the five dynamic ligand-based models and the com-
mon set of compounds obtained by all the five models
were selected for the next level screening. The com-
pounds probability of binding of these screened com-
pounds are expected to be higher as they are able to
attain conformations so that the orientations of their
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Figure 3. Schematic representation of the step by step virtual screening process.

pharmacophoric features match the multiple interaction
pattern of SAM/SAHC at different stages of cyclo-
propanation. The first level screening returned 1438,
166 and 2542 compounds from the datasets DrugBank,
ChEMBL-MTb and ChEMBL-HIV respectively, thus a
total of 4146 compounds.

3.2c Second level filter: Dynamic structure-based
pharmacophore screening: The next level filter applied
was the five structure-based models selected in our pre-
vious study.10 These models are based on the interac-
tion of the cofactors with the active site residues of
CmaA1, hence are more specific for the target. In the
selected structure-based models, the D features were
formed near the residues G72, T94, Q99 which make
H-bonds with the sugar moiety of SAM/SAHC and also
with E124, Y16, which make H-bonds with the adenine
moiety of SAM/SAHC. In most cases the A features

were found near L95, Q99, G74 which make H-bonds
with the sugar moiety of the cofactors and the residues
W123 which makes H-bonds to the adenine part of
the cofactors. The P and N features are found mostly
near the residues I136 and Y33, S34 respectively which
show electrostatic interaction with the polar terminal
part of the cofactors. A thorough conformational sam-
pling was used at this stage of screening and a unique
set of 948 compounds in total and 532, 33 and 383 com-
pounds from the datasets DrugBank, ChEMBL-MTb
and ChEMBL-HIV respectively were obtained at the
second level.

3.3 Third level filter: Docking

The compounds screened in the previous level were
subjected to the third level screening, i.e., docking.
All the 948 compounds were docked to the active sites
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of the parent snapshots of the selected structure based
models i.e., the snapshots from the MD trajectories
of the model systems E-SAHC-D at 15 ns and 20 ns,
E-SAM at 30 ns and E-SAHC at 10 ns and 35 ns.
These snapshots were shown to screen maximum num-
bers of CmaA1 active compounds.6 Top scoring com-
pounds of each docking run with each snapshot were
analyzed. The compounds present in the top 25% of
all the five snapshots were passed to the next level of
screening. Thus the screened compounds are expected
to bind to many optimal conformations of the flexi-
ble active site of CmaA1. A total of 55 compounds
viz., 30 from DrugBank, 8 from ChEMBL-MTb and 17
from ChEMBL-HIV were screened as the top scoring
hits screened by all the five snapshots. Table S2 shows
the docking scores of the 55 compounds screened at
the third level with all the five selected snapshots
of CmaA1.

3.3a Fourth level filter: ADMET properties: The
screened compounds were then subjected to calcula-
tion of ADMET properties with QuickProp module
of Schrodinger which predicts many significant and
pharmacologically relevant properties to estimate the
drug likeliness of a given molecules. One can com-
pare certain properties of a particular molecule with the
given ranges of those of 95% of known drugs. Also,
QuickProp can identify the presence of 30 types of reac-
tive functional groups that may cause false positives
in VSs. The important properties that are calculated
and can be compared with the ranges of known drugs
are MW, dipole, IP, EA, SASA, FOSA, FISA, PISA,
WPSA, PSA, volume, #rotor, donorHB, accptHB,
glob, QPpolrz, QPlogPC16, QPlogPoct, QPlogPw,
QPlogPo/w, logS, QPLogKhsa, QPlogBB, #metabol,
etc. The descriptions of all these descriptors are listed
in List S2. We have prioritized our screened compounds
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Scheme 1. Compounds selected structures of all the selected compounds from all the three datasets taken.
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based on the number of property or descriptor values
that fall outside the 95% range of similar values for

95% of known drugs (#stars) calculated by QuickProp,
Hence a smaller #stars suggests that a molecule is more

Table 2. Pharmacophore fitness and docking scores of the 12 screened hits with the ligand and structure
based pharmacophore models and the snapshots.

Pharmacophore fitness scores of the hit compounds with all the 5 ligand based pharmacophore models
Hit Compounds Dataset E-SAHC-D E-SAM E-SAM-S E-SAHC-P E-SAHC

CHEMBL460104 ChEMBL-Mtb 1.16 1.53 1.30 1.32 1.34
CHEMBL462376 1.20 1.50 1.15 1.28 1.40
CHEMBL512633 1.42 1.53 1.19 1.33 1.10

DB02224 DrugBank 1.34 1.2 1.29 1.28 1.27
DB02375 1.29 1.16 1.29 1.39 1.28
DB03800 1.42 1.67 1.49 1.45 1.37

CHEMBL37869 ChEMBL-HIV 1.03 1.00 2.15 1.32 1.29
CHEMBL67076 0.62 1.02 1.36 1.71 1.54
CHEMBL209958 0.71 1.26 1.38 1.4 1.36
CHEMBL340775 1.17 1.31 1.41 1.34 1.61
CHEMBL1173780 0.62 0.69 1.33 1.19 1.63
CHEMBL462018 0.89 1.15 0.82 1.29 1.24
C1 Reference*31 0.73 1.87 0.96 0.79 1.22

Pharmacophore fitness scores of the hit compounds with all the 5 structure based models
Hit Compounds Dataset E-SAHC-D E-SAHC-D E-SAM E-SAHC E-SAHC

(15 ns) (20 ns) (30 ns) (10 ns) (35 ns)

CHEMBL460104 ChEMBL-Mtb 1.66 1.49 1.43 1.36 1.47
CHEMBL462376 1.58 1.56 1.32 1.28 1.17
CHEMBL512633 1.59 1.58 1.24 1.40 1.45

DB02224 DrugBank 1.42 1.48 1.73 1.54 1.37
DB02375 1.70 1.59 1.52 1.45 1.61
DB03800 1.57 1.37 1.26 1.50 1.57

CHEMBL37869 ChEMBL-HIV 1.67 1.47 1.51 1.38 1.40
CHEMBL67076 1.27 1.41 1.68 1.67 1.52
CHEMBL209958 1.35 1.31 1.21 1.56 1.31
CHEMBL340775 1.44 1.38 1.50 1.60 1.43
CHEMBL1173780 1.69 1.55 1.35 1.71 1.58
CHEMBL462018 1.37 1.25 1.34 1.65 1.42
C1 Reference*31 1.25 0.76 1.25 0.97 1.06

XP docking scores of the hit compounds with the 5 snapshots corresponding to the structure based models
Hit Compounds Dataset E-SAHC-D E-SAHC-D E-SAM E-SAHC E-SAHC

(15 ns) (20 ns) (30 ns) (10 ns) (35 ns)

CHEMBL460104 ChEMBL-Mtb −9.11 −9.31 −10.39 −10.34 −11.83
CHEMBL462376 −8.00 −10.45 −8.39 −14.46 −11.71
CHEMBL512633 −7.20 −9.85 −7.72 −11.47 −10.87

DB02224 DrugBank −8.42 −8.69 −9.53 −11.26 −10.83
DB02375 −10.00 −9.68 −8.91 −11.56 −12.23
DB03800 −13.02 −9.83 −8.93 −12.08 −9.28

CHEMBL37869 ChEMBL-HIV −9.76 −6.70 −10.65 −12.09 −13.99
CHEMBL67076 −9.17 −8.46 −9.01 −12.15 −11.78
CHEMBL209958 −7.06 −6.72 −7.90 −8.89 −9.38
CHEMBL340775 −9.52 −8.36 −8.20 −10.19 −11.29
CHEMBL1173780 −8.68 −10.39 −9.75 −10.40 −13.19
CHEMBL462018 −8.02 −8.03 −8.26 −13.13 −12.32
C1 Reference*31 −3.99 −4.54 −5.68 −5.29 −6.99

*Fitness and docking scores of the most active compound C1 used for validation of the models.31
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drug-like than molecules with more #stars. We screened
all the compounds that have passed our previous
filters which have #star as 0. Thus we obtained
a total of 12 compounds that could pass this fil-
ter, three DrugBank compounds, three ChEMBL-
MTb compounds and six ChEMBL-HIV compounds.
Tables S3–S5 list all the QuickProp properties
of the selected compounds screened at the fourth
level.

The fitness scores of the screened compounds with
the five ligand-based models and five structure-based
models have been given in table 2. Table 2 also gives
the XP docking scores of the 12 compounds with

the CmaA1 snapshots corresponding to the structure
based pharmacophore models. The fitness scores of
the screened hits with the ligand-based pharmacophore
models are mostly higher than the ranges of fitness
scores of the inactive compounds (mentioned in table 1)
for a particular model. A quick look at table 2 also
reveals that the fitness scores of the screened com-
pounds are higher than those of the most active com-
pound C1 considered for validation of the models in
this study.35 Similar trends were also found for the fit-
ness scores of the screened hits with the structure based
pharmacophore models. The upper ranges of the fitness
scores of the inactive compounds for the structure based

CHE

CHE

CHE

EMBL460104

EMBL462376

EMBL512633

Figure 4. Interaction of the screened DrugBank compounds with the CmaA1. Among the five docking
poses with 5 selected snapshots, the complexes with highest docking scores have been shown.
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models (reported in our previous study) were observed
to be much lower than those of the screened hits. The
docking scores of the screened hits were found to be
much higher than that of the most active compound for
all the snapshots.

3.4 Interactions of the screened compounds with the
active site residues of CmaA1

Scheme 1 shows the structures of all the selected com-
pounds from all the three datasets taken. Figure 4–6
show the interactions of these 12 selected compounds
with the CmaA1 snapshot with which they have
the highest docking score. Non-covalent interactions
between the receptor and the ligands are the key factors
for enzyme inhibition. Different types of non-covalent

interactions also influence each other and thus influ-
ence the overall drug receptor interaction. Hence we
have thoroughly analyzed the non-covalent interactions
between CmaA1 and our screened compounds.42,43 The
maximum distance between the H-bond donors (D) and
acceptors (H) was assigned to be 2.5 Å and the min-
imum D-Hydrogen atom-A was assigned to be 120
degrees. The interactions were analyzed carefully based
on this distance angle and orientations of chemical
features of the ligands in the active site.

Among the three selected ChEMBL-MTb com-
pounds (figure 4) the first two i.e., CHEMBL460104
and CHEMBL462376 have been synthesized and their
biological activity against various M. Tb as well as Plas-
modium falciparum and Escherichia coli beta-ketoacyl-
ACP-synthase III (FabH) enzymes have also evaluated
by Alhamadsheh et al.44 These two compounds show

DB02224

DB02375

DB03800

Figure 5. Interaction of the screened ChEMBL-MTb compounds with the CmaA1. Among the five
docking poses with 5 selected snapshots, the complexes with highest docking scores have been shown.
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very low IC50 values of 3.69 and 31.4 nM against
M. Tb FabH. Our docking studies reveal that the aro-
matic rings of both these compounds make π-π inter-
actions with the F142 residue and make H-bonds with
the residues T94 and L95. CHEMBL460104 makes
an additional π-π interaction with the H141 residue.
The third ChEMBL-MTb compound CHEMBL512633
screened in our study was synthesized and biologically
evaluated by Guzel et al. This compound showed a
Ki of 7.2 and 7.5 nM against M. Tb recombinant car-
bonic anhydrases Rv3273 and Rv1284, respectively,
and showed selectivity for the M. Tb targets than their
human homologues.45 This compound makes H-bonds
with the E124 and H141 residues and the aromatic sys-
tem makes π-π interactions with the F142 residue. The
study identified these compounds as potential M. Tb
CmaA1 inhibitors, as well as explored their new appli-
cations. These three compounds are expected to inhibit
CmaA1 along with the other M. Tb targets.

Three DrugBank compounds (figure 5) were identi-
fied among the top 12 hits. These can be considered
for further experimental assays on CmaA1 for drug
repositioning. One of the three selected DrugBank com-
pounds is (2s, 3s)-trans-dihydroquercetin (DB02224)

which belongs to the class flavonoids with no infor-
mation available about the target in DrugBank. This
compound has high similarity with the approved drug
Hesperetin (0.907 Tanimotto coefficient) which is a
sterol o-acyltransferase 1 inhibitor used for lowering
cholesterol. This compound binds to M. Tb CmaA1 by
making-bonds with the residues W123, D124, H141
and Q99 residues. The electron rich aromatic ring also
makes π-π interactions with the F142. The second
screened DrugBank compound is Myricetin (DB02375)
which also belongs to flavonoids class and act as
inhibitors of multidrug resistance-associated protein1,
which may be useful in managing of antimicrobial
drug resistance.46 This compound makes H- bonds with
the residues Y16, G74, S96, Q99 and W123. It also
makes π-π interactions with the F142 of CmaA1. The
third DrugBank compound is an experimental small
molecule 2’-deoxyuridylic acid (DB03800) belonging
to the class carbohydrate conjugates which binds to
proteins from a wide range of organisms including
deoxyuridine 5’-triphosphate nucleotidohydrolase of
M. Tb and thymidylate synthase of human. This com-
pound binds to CmaA1 by making H-bond interactions
with H8, G72, T94, L95, Q99, W123 and E124.

CHEM
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MBL462018 

MBL67076 

MBL340775 

CHEMBL37869

CHEMBL20995

CHEMBL117378
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80 

Figure 6. Interaction of the screened ChEMBL-HIV compounds with the CmaA1. Among the five docking poses with 5
selected snapshots, the complexes with highest docking scores have been shown.
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Among the 6 screened ChEMBL-HIV compounds
(figure 6), the first one is CHEMBL37869, which shows
an IC50of 300 nM against HIV integrase as reported by
Zouhiri et al., who performed structure activity relation-
ship studies and tested this compound for inhibition of
HIV-1 integrase and replication of HIV-1 in cell culture.
This compound makes H-bonds with the residues H8,
Y33, Q99, G137 and H141 and makes π-π interactions
with F142.

The compound CHEMBL67076 has been reported to
inhibit the HIV-1 integrase with an IC50 of 1 μM. This
compound makes H-bonds with H8, G72, T94, L95,
Q99 and E124 and π-π interactions with F142.16 The
compound CHEMBL209958 was synthesized and the
in vitro structure bioactivity study was performed by
Fardi et al.47 This compound shows an IC50 of 80 nM
against HIV-1 integrase. Our docking study shows that
this compound makes H-bonds with W123 and H141
and π-π interactions with F142 of CmaA1. The com-
pound CHEMBL340775 was synthesized and tested
for HIV-1 integrase inhibitory activity by Artico et al.,
in 1998.48 This compound showed an IC50of 200 nM
against the HIV-1 integrase. This binds to CmaA1
by making H-bonds with the residues L5, Q99, E124
and R146. The compound CHEMBL1173780 is a 13
hydroxylated 2-arylnaphthalene synthesized and tested
for its inhibitory activities against HIV-1 integrase by
Maurin et al., in 2010.49 This compound showed IC50

value of 500 nM against HIV-1 integrase. In our dock-
ing study it was found to bind to CmaA1 by making
H-bond interactions with H8, Y33, G74, T94, Q99 and
H141 and π-π interactions with F142. The compound
CHEMBL462018 is one of the 6-N-acyltriciribine ana-
logues synthesized and tested by Porcari et al., showed
IC50 of 40 nM against the reverse transcriptase activity
in cells acutely infected with HIV-1.50 This compound
binds to CmaA1 by making H-bonds with the residues
H8, Y33, G72 and E124 of CmaA1.

The compounds screened by the dynamics-based
pharmacophore models and docking mostly interact
with the residues H8, Y33, G72, G74, T94, L95, Q99,
W123, E124 and H141 which were found to be impor-
tant residues for the cofactor binding. Hence, these
compounds are expected to be potential inhibitors of
CmaA1 by competing with the natural cofactors for
binding into the cofactor binding pocket of CmaA1.

4. Conclusions

Ligand-based pharmacophore models have been gen-
erated from the snapshots obtained from the MD sim-
ulation trajectories of five model systems of CmaA1

representing various stages of cyclopropanation taken
from a previous study and the reported crystal structure
of CmaA1. The performance of these pharmacophore
models were validated by mapping 23 active and 1398
inactive reference compounds of CmaA1. The ligand-
based pharmacophore models generated from the aver-
aged structures of the cofactors extracted from the
snapshots were able to screen upto 22 out of 23 CmaA1
active compounds and a very less percentage of inac-
tive compounds. Performance of the dynamics-based
models was found to be better than the model obtained
from the conformation of SAHC in the crystal struc-
ture which could screen only four active compounds.
A novel VS workflow was designed with four levels
of filters viz., ligand-based pharmacophore screening,
structure based pharmacophore screening, docking and
ADMET filters. A dataset containing a total of 18,239
compounds (6,429 drugs reported in DrugBank, 701
and 11,109 compounds showing activity below 1 μM
range on M. Tb HIV cell lines respectively collected
from ChEMBL database) was screened using the VS
workflow. The 12 screened compounds were found to
bind to the CmaA1 active site by interacting with the
residues H8, Y33, G72, G74, T94, L93, L95, Q99,
W123, E124 and H141. These residues not only have
important roles for the binding of the natural substrates
of CmaA1, but were also found to undergo confor-
mational changes that are necessary during the cyclo-
propanation reaction. Hence, the screened compounds
maybe effective inhibitors of CmaA1 out of which 6
compounds may act as dual inhibitors of HIV and M.
Tb. Experimental screening of these hits to verify their
CmaA1 inhibitory activities are in progress.

Supplementary Information (SI)

Scheme S1 showing the reference CmaA1 inhibitors,
List S1 gives the details of the dataset download and
preparation, table S1 giving the details (number of com-
pounds matched, docking and fitness scores, etc.) of all
the ligand-based pharmacophore models, table S2–S5
giving the docking scores and QuickProp Descriptors of
all screened compounds and List S2 giving the descrip-
tions of the Quickprop descriptors are provided at www.
ias.ac.in/chemsci.
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