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Dynamics of atom tunnelling in a symmetric double well coupled
to an asymmetric double well: The case of malonaldehyde#
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Abstract. The quantum dynamics of intramolecular H-atom transfer in malonaldehyde is investigated with a
model two-dimensional Hamiltonian constructed with the help of available ab initio theoretical data on the rel-
evant portion of the potential energy surface. At zero temperature, the H-atom transfer takes place by tunnelling
leading to cis-cis isomerization while the cis-trans channel remains closed. Local excitation of the cis-trans
mode by an external field is predicted to quench cis-cis tunnelling isomerization while excitation of the cis-cis
mode is found to enhance the isomerization by tunnelling.

Keywords. Intramolecular H-transfer; quenching of tunnelling; quantum phase space diagram;
control of tunnelling; mean field dynamics.

1. Introduction

Quantum mechanical tunnelling has been a subbject
of intense study ever since quantum mechanics was
formulated. In fact, the phenomenon of atom tun-
nelling pervades different branches of physics, chem-
istry and biology.1–3 There are mainly three kinds of
phenomena and processes that have been studied in
the context of atom tunnelling in the gas phase. The
energy splitting in symmetric double well potentials
has been widely known to provide spectral signature
of tunnelling.4 Dissociation of a metastable molecule
by tunnelling through potential barriers and quantum
tunnelling diffusion of a positive muon and munon-
ium provide excellent examples of tunnelling dynam-
ics mediated phenomena.5 tunnelling contribution to
bimolecular reaction rate has also attracted a great deal
of interest in the recent years.6 Proton or hydrogen
atom tunnelling in symmetric or asymmetric double
well potentials are ubiquitous.7–10 The zero tempera-
ture motion of the proton or hydrogen atom in the
double well is often described by a tunnelling mode
which may be coupled to, let us say, a bond stretch-
ing mode. The stretching mode may then provide a
handle for controlling the tunnelling.11 If the stretch-
ing mode is replaced by another tunnelling mode, it is
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imperative to understand how the dynamics of tun-
nelling in one double well gets affected by coupling
with the other double well and how one can exercise
control over the tunnelling motion in one particular
well.

In the present communication, we have undertaken
an analysis of the questions posed above by numeri-
cally following the quantum dynamics of tunnelling of
the aldehydic H-atom in the malonaldehyde molecule.
Experimental tunnelling splitting data together with
ab initio theoretical information about the relevant
part of the potential energy surface on which the H-
atom transfer in malonaldehyde takes place are used to
construct and calibrate a model two-dimensional poten-
tial for describing the tunnelling dynamics of malon-
aldehyde. A mean field method is used to describe
the dynamics within the framework of time dependent
Fourier Grid Hamiltonian (TDFGH) formulation12–14

and the dynamics of tunnelling is analysed in detail. We
have also investigated how photo-excitation of one of
the two coupled tunnelling modes affects the tunnelling
dynamics of the other and can be used to control the
tunnelling isomerization in malonaldehyde.

2. Methods

Let H0(x,y) be the Hamiltonian of a particle of mass ‘m’
moving on the x-y plane in a potential V(x,y). V(x,y)
represents a superposition of a symmetric double well
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potential V1(x) and an asymmetric double well V2(y).
Thus, we have

H0(x, y) = H1(x) + H2(y)

= T (x) + V1(x) + T (y) + V2(y). (1)

In equation (1) two tunnelling modes are represented by
two independent coordinates x and y, respectively. We
assume that H1(x) represents the Hamiltonian describ-
ing the motion in the symmetric double well while
H2 (y) represents motion in an asymmetric double well
potential. Let V int (x, y) represent the coupling between
the two modes and λ be the strength of the coupling.
Then the total Hamiltonian is given by

H0(x, y) = H1(x) + H2(y) + λ Vint(x, y), (2)

where H1(x) is given by

H1(x) = T (x) + V1(x), (3)

and

H2(y) = T (y) + V2(y). (4)

V1(x) and V2(y) being the symmetric and asymmet-
ric double well potentials. Dynamics of the coupled
system can be studied in a time-dependent mean field
framework where we write the wave function of the
composite system as

|ψ(x, y, t)〉 = |φxχ y〉 . (5)

In the TDFGH method, we choose

|φx〉 =
nx∑

p=1

wx
p(t)

∣∣xp

〉
�x, (6)

and

|χ y〉 =
ny∑

q=1

wy
q (t)

∣∣yq

〉
�y, (7)

wx
p(t) and wy

q (t) are the time-dependent grid point
amplitudes along the x and y directions, while |φx〉
and |χ y〉 are approximate eigenfunctions of H1(x) and
H2 (y), respectively. Time dependent variational princi-
ple15,16 leads to the following evolution equations for
|φx〉 and |χ y〉 in the presence of the interaction potential
V int (x, y)14

i�
|φx(t)〉

dt
= (

H1(x) + εy + λVint(x, ȳ, t)
) |φx〉

= Heff (x, t)|φx(t)〉 (8)

and

|i� |χ y(t)〉
dt

= (H2(y) + εx + λVint(x̄, y, t))|χ y〉
= Heff(y, t)|χ y(t)〉, (9)

Vint(x, ȳ, t) is the effective time-dependent potential
spatially averaged over y at time t and acting along
the x direction while Vint(x̄, y, t) is the x-averaged
counterpart of the interaction potential for the motion
along the y direction. With reference to the above men-
tioned equations time evolution of the grid point ampli-
tudes are easily obtained by projecting equations (8)
and (9) with 〈xp(t)| and 〈yq(t)|, respectively and are
given by

i�ẇx
p(t) =

nx∑

q=1

〈xp|Heff (x, t)|xq〉wx
q (t),

p = 1, 2, ...., nx (10)

and

i�ẇy
q (t) =

nx∑

r=1

〈yq |Heff (y, t)|yr 〉wy
r (t),

q = 1, 2, ....., ny. (11)

These equations can be numerically integrated by a
suitable integrator like the sixth order Runge-Kutta
method.

When a quantum particle moves in a symmetric dou-
ble well potential there is a non-zero probability of its
tunnelling from one well to the other even if its energy
is less than the energy required to reach the barrier top.
Let us suppose that the particle was initially localized
in the left well of the uncoupled symmetric double-
well (figure 1a) potential (cis-cis mode). The lowest
energy localized states (φL , φR) with this potential, can
be described by linear combinations of the two lowest
energy eigen-states of even (ψ+

0 ) and odd parity (ψ−
0 ),

respectively:

φL = 1√
2
(ψ+

0 + ψ−
0 ), (12)

φR = 1√
2
(ψ+

0 − ψ−
0 ), (13)

where φL and φR represent the states localized in the
left and the right well, respectively. In the absence of
any coupling between cis-cis (symmetric double well)
and the cis-trans (asymmetric double well) isomeriza-
tion modes the particle tunnels coherently from the left
well to the right well. If one takes φL to be the initial
state, tunnelling probability is obtained by calculating
the probability of finding the particle in the right well.
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Figure 1. (a) Potential energy surface along cis↔cis reac-
tion coordinate. (b) Potential energy surface along cis↔
trans reaction coordinate.

The probability PR(t) at any particular instant is given
by (the barrier is located at x = 0)

PR(t) =
∫ ∞

0

|ψ(x, t)|2 dx, (14)

which, in the two-dimensional case (using mean field
formalism14 and the Fourier Grid Hamiltonian (FGH)12

basis) translates into

PR(t) =
nx∑

p= nx −1
2

ny∑

q=1

wx∗
p wy

q�x�y. (15)

The rate of tunnelling may be obtained by computing
the average slope of the PR(t) − t graph. The tunnelling
rate can also be calculated from the average slope of
the 〈x(t)〉 − t graph which leads to average tunnelling
velocity 〈v〉. The tunnelling time is obtained by setting
τtunnelling = l0

〈v〉 , where l0 is the idealized well-to-well

distance. Inverse of τ tunnelling leads to the tunnelling
rate.17 To compute 〈x(t)〉, we evaluate the expression

〈x(t)〉 = 〈ψ(x, y, t)|x |ψ(x, y, t)〉. (16)

Substituting the expansion for |ψ(x, y, t)〉 from equa-
tion (4) in equation (16) we get

〈x(t)〉 =
nx∑

p

wx∗
p xpw

x
p. (17)

The rate of tunnelling is also related to the tunnelling
splitting in the symmetric double well. When the sym-
metric double well gets coupled to an asymmetric dou-
ble well the tunnelling splitting or rate can increase or
decrease or stay unaffected depending upon the nature
and strength of the coupling which in turn is deter-
mined by the functional form of V int(x, y) and the cou-
pling strength λ. 11 We can also calculate the tunnelling
rate or probability when one of the coupled modes is
excited by a time varying external field by following the
procedure already outlined. Thus a time-dependent
sinusoidally varying electric field applied along the
y direction, leads to the following sets of evolution
equations for wx

p(t), w
y
q (t)

i�ẇx
p(t) =

nx∑

q=1

〈xp|Heff (x, t)|xq〉wx
q (t),

p = 1, 2, .....nx (18)

and

i�ẇy
q (t) =

nx∑

r=1

〈yq |H ′
eff (y, t)|yr 〉wy

r (t),

q = 1, 2, .....ny, (19)

where

H ′
eff (y, t) = Heff (y, t) + ε0

y y sin(ωt + δ) (20)

Heff (x, t) and Heff (y, t) have already been defined in
equation (8) and equation (9), respectively.

3. Results and discussion

3.1 Constructing the model potential

It has been suggested that the ground state intramolec-
ular H-atom transfer in malonaldehyde molecule takes
place via tunnelling.18 The global cis-to-cis H-atom
transfer occurs via a low energy planar transition state.
The section of potential energy surface (along x) on
which the transfer takes place can be described by a
symmetric double well potential V1(x) (figure 1a), x



16 S Ghosh and S P Bhattacharyya

representing the in-plane motion of the tunnelling H-
atom. The cis to trans enolization, on the other hand,
is mediated by a nonplanar high energy transition state
(figure 1b). The corresponding section of the potential
energy surface (along y) is described by an asymmet-
ric double well V2 (y), y representing the out-of-plane
motion of the H-atom. We represent the effective two-
dimensional PES on which the H-atom transfer takes
place by V(x, y) where V (x, y) = V1(x) + V2(y) +
λVint(x, y) and assume that V int(x, y) is representable as
xm yn. So the total Hamiltonian of the coupled system
is H(x, y) = T (x) + V1(x) + T (y) + V2(y) + λxm yn

and the effective two-dimensional PES in which the H-
atom transfer takes place is V (x, y) = V1(x)+ V2(y)+
λxm yn. We assume that the symmetric and asymmet-
ric double well potentials are V1(x) = Ax4 − Bx2

(figure 1a) and V2(y) = C(y −b)4 − D(y −b)3 − E(y −
b)2 + F(y − b) (figure 1b), respectively. The parame-
ters A, B, C, D, E and F have been determined so that
the locations and the depths of the global cis, and local
trans minima and the barrier heights match as closely
as possible with the accurate theoretical predictions of
Yagi et al18 made on the basis of MP2 6-31G (d,p) cal-
culation. The magnitude of the shift ‘b’ used in V2(y)
is 2.4 a.u. The parameters A and B were fixed from
the known barrier height of the cis1-cis2 transfer and
location of the TS of the process as predicted by Yagi
et al. 18 The parameters C, D, E and F were fixed by
using the available information on the location and the
energy of the trans conformation and the energy for
the cis to trans isomerization.18 The relevant quantities
used in fitting are reported in table 1 while the fitted
potential parameters (A-G) are reported in table 2.

For fixing the coupling strength λ, we have pro-
ceeded in the following manner. The Hamiltonian H1(x)
was diagonalized in the coordinate basis (|xq >) on a
grid of length of 10 a.u. containing 151 grid points
while H2(y) was similarly diagonalized on a grid of
20 a.u. containing 151 grid points by using the FGH
recipe.12 Eighteen of the lowest eigenstates {φi(x)} of
H1(x) and {φ j(y)} of H2(y) were taken to form the

Table 1. Ab initio theoretical data used in fixing the model
potential parameters.

Location on the reaction Energy
coordinate (a, u) (Kcal/mol)

cis-1 0 0.0
cis-2 3.2 0.0
TS for cis-1↔cis-2 1.6 3.6
TS for cis-1↔trans 4 19.0
trans 8 14.1

Table 2. Double well parameters
used in the calculations.

Parameters Values (a.u.)

A 0.001
B 0.0056
C 0.00009374
D 0.00109
E 0.00299
F 0.005232

product basis states {φi(x)χ j(y)}i j . The total Hamilto-
nian H(x, y, λ) = H1(x) + H2(y) + λxm yn was then
diagonalized in the product basis for different values
of λ, m and n. The tunnelling splitting �0(λ) in each
case was calculated from the appropriate eigenvalues
so obtained. The coupling strength λ was chosen so as
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Figure 2. (a) Predicted tunnelling splitting as a function of
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Table 3. Predicted tunnelling splitting in malonaldehyde and deuterium substi-
tuted malonaldehyde compared with available experimental data (cm−1).

Parameters for model Predicted tunnelling Experimental
potential splitting splitting

m = 2, n = 2, λ = 0.0015 21.5(H), 2.3 (D) –
m = 1, n = 1, λ = 1.75*10−5 21.4(H), 18.6 (D) 21.6(H)
m = 2, n = 1, λ = 1.0*10−5 21.4(H), 19.7 (D) 2.9(D)

reproduce the experimental value of tunnelling split-
ting �0. Figure 2a shows how the computed �0 varies
with λ when we chose m = n = 2. The value of �0(λ)
for which the experimental value of �0 is reproduced
is reported in (table 3). For m = n = 1 or, m = 1,
n = 2 the corresponding values of λ0 for which the
predicted value of �0, matches with experimental tun-
nelling splitting data are also reported in the same table.
For m = 1, n = 2 we used a symmetric form of coupling
i.e., Vint(x, y) = λ(xm yn + xn ym) to complete the deter-
mination of the best model PES for studying tunnelling
dynamics of malonaldehyde.

We have also calculated �0 for the deuterium sub-
stituted malonaldehyde by using the already calibrated
potential for malonaldehyde. Table 3 reports and com-
pares theoretically obtained values of �0 and the exper-
imentally determined values �0 for malonaldehyde and
deuterium-substituted malonaldehyde with their theo-
retical counterparts for three model potentials proposed
by us. The agreement with experimental splitting data
for malonaldehyde as well as deuterium-substituted
malonaldehyde is excellent only when Vint(x, y) =
λxm yn with m = n = 2 is used. We have therefore
chosen the model Hamiltonian for describing the tun-
nelling dynamics of H-atom transfer of malonaldehyde
accordingly.

3.2 2-d tunnelling dynamics in malonaldehyde

We have performed time-dependent two-dimensional
mean field calculations13 for the tunnelling H-atom
transfer in the ground state of malonaldehyde. The ini-
tial state was chosen to be |φ0(x)χ0(y)〉, where, |φ0(x)〉
and |χ0(y)〉 are the lowest eigen-states of H1(x) and
H2 (y), respectively. Figure 2b shows how the computed
<x (t)> changes with time. It can be clearly seen that in
the ground state (zero temperature), tunnelling results
in cis↔cis isomerization. The ’quantum phase space’
along the corresponding coordinate is open and the
‘trajectory’ (figure 3a) represents underbarrier cross-
ing from one cis structure to its degenarate counter-
part, the energy remaining under the barrier through

out the dynamics. The ‘quantum phase space’ along
the cis-trans H-atom transfer coordinate shows that the
‘quantum phase space’ is closed and confined to the
cis side of the barrier (figure 3b). At zero temperature,
therefore only the cis↔cis isomerization by tunnelling
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Figure 4. (a) Plot of <x (t)> versus time showing the dynamics of the cis-
cis isomerization when cis-trans mode is locally excited. (b) ‘Quantum phase
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takes place. The other channel, viz. cis↔trans is virtu-
ally closed. We stress here that unless both the in-plane
and out-of-plane modes are taken into account, neither
the tunnelling splitting data, nor the the correct picture
of the dynamics of the ground state cis-cis isomeriza-
tion by tunnelling are obtained. The tunnelling transfer
of H-atom in malonaldehyde is therefore an essentially
two-dimensional process.

3.3 Controlling tunnelling H-atom transfer

Control of tunnelling is an important problem and has
attracted good deal of recent attention.19–22 We have
investigated how the cis-cis tunnelling can be possibly
quenched or attenuated by manipulating the cis-trans
tunnelling mode with an external time varying field. We
have locally excited the asymmetric cis-trans modes
and calculated how the cis-cis tunnelling H-atom trans-
fer mode responds to it. Figure 4a shows how the aver-
age value of the tunnelling coordinate (〈x〉) evolves

with time, when the asymmetric mode is coupled to a
sinusoidal field of frequency ω = 0.001 (a.u), inten-
sity ε0 = 0.01 (a.u) and phase δ = 0. It is clearly seen
that the particle tends to get localized in the barrier
region indicating that the local excitation in the asym-
metric cis-trans mode coupled to the symmetric cis-cis
mode tends to quench the cis-cis tunnelling isomeriza-
tion. The corresponding quantum phase space diagram
(figure 4b) corroborates the assertion. It would be inter-
esting to have experimental confirmation of the pre-
diction. When the external field is coupled to the cis-
cis tunnelling coordinate (x) (intensity ε0 = 0.01 a.u.,
ω = �E1→3

�
, phase δ = 0), the tunnelling rate is enhanced

as can be seen from the plot of 〈x〉 against time
(figure 5a). The corresponding ‘quantum phase space’
diagram (figure 5b) also supports the enhancement of
tunnelling. There is no significant change in the dynam-
ics of cis-trans tunnelling mode whatsoever. In all the
cases reported here we have verified that E(t) is less
than the barrier top energy so that the isomerization
takes place by tunnelling only.
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excited.
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4. Conclusion

It can be concluded that tunnelling in a symmetrical
double well may be affected by coupling with other
orthogonal modes. The effect of coupling on the tun-
nelling rate (supression or enhancement) depends on
the shape of the two-dimensional potential energy sur-
face on which tunnelling takes place. In the case of mal-
onaldehyde, the experimental tunnelling splitting can
be reproduced only if the corresponding out-of-plane
cis-trans motion of the H-atom is taken into account
along with the cis-cis motion of the transferring H-atom
and a specific form of interaction potential is assumed.
The model PES proposed by us for malonaldehyde
seems to describe the tunnelling dynamics quite well
and could be used to describe the dynamics of H-atom
transfer in related systems.
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