Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 3, June 2000, p. 373 © Indian Academy of Sciences

Bulky aryloxo organotitanium chlorides

G ANANTHARAMAN, KANHAYALAL BAHETI and R MURUGAVEL Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

The last few years have witnessed a sudden interest in the chemistry of titanium aryloxides due to their use as Diels–Alder¹ and cross coupling/oligomerization catalysts². There have also been reports on the use of $[(ArO)(C_5H_5)TiCl_2]$ for the preparation of cationic alkyl derivatives of titanium³.

In view of the proven ability of C_5Me_5 ligand (Cp*) in stabilizing organotitanium compounds, it is of interest to generate bulky aryloxide derivatives of Cp*TiCl₃. Thus, the reaction of Cp*TiCl₃ with various phenols in a 1:1 ratio in the presence of Et₃N affords the aryloxides of the formula [(ArO)Cp*TiCl₂] (Ar = 4-MeC₆H₄, 2,6-Me₂C₆H₃, 2,6-*i*Pr₂C₆H₃, 2,6-*i*Bu₂-4-MeCl₆H₂) in nearly quantitative yields. The details of this investigation are discussed in this presentation.

References

- 1. Santora B P, White P S and Gagne M R 1999 Organometallics 18 2557
- 2. Waratuke S A, Thorn M G, Fanwick P E, Rothwell A P and Rothwell I P 1999 J. Am. Chem. Soc. 121 9111
- 3. Thorn M G, Vilarado J S, Fanwick P E and Rothwell I P 1999 Chem. Commun. 2427