Electrochemical hydrogen evolution on solid oxides
RuO₂, Ru₀.₇Rh₀.₃O₂ and IrO₂ from acidic water

R MANOHARAN
HEB R&D Laboratories, High Energy Batteries (India) Ltd, Mathur 622 515,
India

MS received 8 April 1996; revised 23 August 1996

Abstract. In contrast to traditional research with pure metals and intermetallic
electrocatalysts for evolving hydrogen from acidic water, solid oxide catalytic
electrode materials have been investigated recently. RuO₂, Ru₀.₇Rh₀.₃O₂ and
IrO₂ pellet electrodes have been prepared and the occurrence of the hydrogen
evolution reaction on these oxides has been characterised by cyclic voltammetric
and galvanostatic polarization curves in 2·5 M H₂SO₄ solution at room tempera-
ture. Measurements of the pH dependence of the surface charge densities on
oxide particles have been carried out to correlate surface oxide properties with
electrochemical properties. Reaction mechanistic pathways on metals and inter-
metallic compounds have incorporated the adsorption of hydrogen atoms on
metal sites. It is suggested from the correlation of surface acid/base properties of
oxides with their electrochemical properties that the sites of reaction are the
surface oxygen atoms covalently bonded to suitable cations and possessing the
appropriate energetics in the oxides.

Keywords. Hydrogen evolution reaction; RuO₂, Ru₀.₇Rh₀.₃O₂ and IrO₂
électrodes; acidic water; surface Ru redox couples; acidic oxygen atoms.

1. Introduction

Hydrogen production by water electrolysis is a well-known process. Water electro-
lysis is the simplest method for producing pure hydrogen on a large scale and has
naturally become an attractive technology in the hydrogen energy market. Conven-
tionally pure metals or intermetallic compounds have been used as catalytic elec-
trodes for evolving hydrogen from acidic water electrolyte. Accordingly, hydrogen
evolution mechanistic pathways have been proposed assuming metal sites as the
reaction sites. After the expansion of solid state materials research in the past two
decades (Rao 1995), electrochemists have now learnt to use various solid materials
for electrochemical applications. Recently, a few groups have attempted to employ
metallic oxides as electrodes for evolving hydrogen from acidic electrolytes without
reducing the oxides down to the metals, and at the same time preventing corrosion
to the electrodes. Materials like RuO₂ (Galizzioli et al 1975; Kotz and Stucki 1987)
and IrO₂ films (Boots and Trasatti 1989) and Sr₁₋ₓNbO₃₋₅ (Manoharan and
Goodenough 1990) have been shown to be promising for this purpose.

In the present study, we have prepared pellet electrodes starting from RuO₂,
Ru₀.₇Rh₀.₃O₂ and IrO₂ powders and have carried out hydrogen evolution reaction
(HER) electrocatalytic studies to demonstrate that oxide materials can be success-
fully tested as hydrogen electrode materials. pH versus surface charge density
measurements have also been carried out and correlated with electrochemical properties to deduce the reaction pathways. It is pointed out from the consideration of the acid/base properties of oxides that the reaction sites for HER are the surface oxygen atoms bonded to suitable cations.

2. Experimental

The commercially available RuO$_2$ and IrO$_2$ powders were pressed into pellets and sintered in air at 900°C for 24 h. The compound Ru$_{1-x}$Rh$_x$O$_2$ ($x=0.3$) was prepared by the following procedure. Stoichiometric amounts of ruthenium and rhodium chlorides were mixed and co-precipitated by ammonia at pH 9. The gels obtained were filtered, washed thoroughly with pure water and dried in an oven at 140°C. They were then heated in air at 800°C for 4 days. The black powders thus obtained were pelletized and sintered in air at 1000°C for 24 h. The formation of a single phase was confirmed by X-ray diffraction studies. The tetragonal lattice parameters obtained ($a = 4.49\ \text{Å}$ and $c = 3.10\ \text{Å}$) are in agreement with those reported in the literature (Fernandez et al 1983). The rhodium seems to enter the rutile structure as Rh$^{4+}$.

All the sintered pellets were mounted onto electrode holders and the electrochemical measurements were carried out in 2.5 M H$_2$SO$_4$ solution using a conventional three-electrode cell assembly having a porous glass-separator between the working and counter electrodes as mentioned earlier (Manoharan and Goodenough 1990). All the electrode potentials are referred to the Hg/Hg$_2$SO$_4$, 2.5 M H$_2$SO$_4$ (MMS) reference electrode.

Surface charge densities of the oxide particles were determined by potentiometric acid–base titration. The oxide powders were suspended in 25 ml of an aqueous solution of 0.004 M KOH and 0.4 M KCl. The suspensions were titrated with 0.1 M HCl with continuous stirring and N$_2$ gas bubbled through the solution to prevent contamination from the CO$_2$ present in the air. The end-point at each point of the titration curve was determined after the pH reading became stable. Comparison of this titration curve with the one obtained with the blank solution permitted determination of the mean surface charge on the oxide particles due to protonation or deprotonation of the surface using the formula,

$$q^\pm = F \frac{V C}{S W},$$

where F is Faraday's constant, V is the difference in the volume of the titrant with/without the powder for a given pH, C is the concentration of the titrant, S is the BET surface area (RuO$_2$ 7.4 m2/g, IrO$_2$ 8 m2/g and Ru$_{0.7}$Rh$_{0.3}$O$_2$ 4 m2/g), and W is the weight of powder used.

3. Results and discussions

Cyclic voltammogram (CV) recorded in the potential range -0.8 to 0.8 V and -1.0 to 0.8 V for RuO$_2$ are shown in figure 1. As suggested by some prominent workers (Trasatti and Buzzanca 1971; Dobhoffer et al 1978; Burke and Murphy 1979) and from the consideration of thermodynamic (Pourbix diagram for Ru-water system), crystallographic and electronic properties, three quasi-reversible peaks seen in the CV of figure 1a can be attributed to changes in the Ru valence states (redox couple
Electrochemical hydrogen evolution

Figure 1. Cyclic voltammogram for RuO₂ pellet electrode obtained in 2.5 M
H₂SO₄ at room temperature in the potential range -0.8 to 0.8 V (a) and
-1.0 to 0.8 V (b). Scan rate: 100 mVs⁻¹.

Ru²⁺/³⁺ at about -0.6 V, Ru³⁺/⁴⁺ couple at about 0.02 V and Ru⁴⁺/⁵⁺ at about
0.6 V) taking place on the surface of the ruthenium dioxide during the potential
scanning. When the potential is swept into the cathodic direction, as in figure 1b,
heavy hydrogen evolution takes place after the Ru²⁺/³⁺ couple has been formed on
the surface. Reduction of metal oxide down to metal does not take place.

Variation of valence states of surface metal ions and evolution of hydrogen gas
have been noticed for the materials IrO₂ and Ru₀.⁷Rh₀.₃O₂ also and their CVs are
shown in figures 2 and 3. The CV of figure 2a has been recorded at a scan rate of
10 mVs⁻¹ and that of figure 2b at a scan rate of 100 mVs⁻¹. In contrast to other
materials, the sample of IrO₂ in this study does not clearly show up the features
corresponding to changes in Ir value states when the CV is recorded at a scan rate
Figure 3. Cyclic voltammogram for Ru$_{0.7}$Rh$_{0.3}$O$_2$ pellet electrode obtained in 2.5 M H$_2$SO$_4$ at room temperature in the potential range -0.8 to 0.8 V (a) and -1.0 to 0.8 V (b). Scan rate: 100 mVs$^{-1}$.

Figure 4. Tafel curves for H$_2$ evolution on (a) RuO$_2$, (b) IrO$_2$ and (c) Ru$_{0.7}$Rh$_{0.3}$O$_2$.

of 100 mVs$^{-1}$. Only at slower scan rates such as 10 mVs$^{-1}$ are the distinguishing features clearly seen. We have recorded the CV of figure 2b at 100 mVs$^{-1}$ to maintain consistency with the other CVs of the text. In figure 3, introduction of Rh into RuO$_2$ has changed the features of the RuO$_2$ CV drastically. Prominent peaks appearing at around 0.15 V may be attributed to the occurrence of the 3+/4+ couple of Rh along with that of Ru and peaks appearing at $E < -0.4$ V and at $E > 0.4$ V to the occurrence of 2+/3+ and 4+/5+ couples respectively.

Galvanostatic polarization curves obtained for the HER on the oxide electrode at 25°C are shown in figure 4. The sintered electrodes of RuO$_2$ and Ru$_{0.7}$Rh$_{0.3}$O$_2$ have a Tafel slope of 30 mV/dec and the sintered IrO$_2$ electrode has a Tafel slope of 40 mV/dec. The reversible hydrogen potential (i.e. -0.63 V vs MMS or 0 V vs NHE) has been noticed under open circuit voltage conditions on these electrodes after a
Electrochemical hydrogen evolution

strong hydrogen discharge in H₂ saturated solutions. All these data indicate that the present oxide materials are suitable for use as hydrogen evolving electrodes.

At the surface of an oxide particle in aqueous solutions the surface cations bind water in order to complete their oxygen co-ordination (England et al 1980). In the case of oxide powders which have fixed particle size distribution and crystallinity, the protons of the water molecules redistribute themselves over the surface and also attain equilibrium with the pH of the solution. If the protons are lost to the solution, the oxide particles become negatively charged; if protons are added from the solution to the surface, the particles become positively charged. The point of zero zeta potential (pzzp) is the pH of zero net surface charge. The addition of protons to the surface or the loosing of protons from the surface to the solution is governed by the strength of the oxygen bonding to the cation of the oxide. When this binding is covalently strong, bonding to the protons is weak and the oxide is "acidic"—protons will be released into the solution. When metal–oxygen bonding is covalently weak, the bonding of the protons is strong and the oxide is “basic”—protons will be added to the surface from the solution. Two consequences follow from this binding of surface water: (i) Chemical reactions at oxide surface involve the surface oxygen species; access to a surface cation is only via a displacement reaction: (ii) Exchange of protons between the surface oxygen atoms of a particle and aqueous oxygen allow the total surface charge on the particle to remain in equilibrium with the pH of the solution. Therefore, in our reaction equations we have to restrict ourselves to the retention of the surface charge on the particle as in any surface reaction pathway at a constant solution pH (Goodenough et al 1990).

RuO₂, Ru₀.₇Rh₀.₃O₂ and IrO₂ have the rutile surface structure. The pH dependence of the mean surface-charge densities of these oxides is shown in figure 5. The surface-charge densities are near zero in the range 4 < pH < 7 for RuO₂ and IrO₂ and in the range 4 < pH < 7.93 for Ru₀.₇Rh₀.₃O₂. At higher pH solutions, the oxide particles are negatively charged and at pH < 4, they are positively charged. These suggest that rutile oxides have a set of distinguishable sites that are nearly all vacant in the dry state. It is more difficult to identify these sites with certainty since the bulk oxygens are all energetically equivalent. However, two types of surface oxygen atoms are present: bridging and terminal oxygen atoms. The bridging oxygen would

Figure 5. Surface charge densities of the oxide particles immersed in aqueous solutions of constant ionic strength.
be more tightly bound and hence more acidic; therefore it can be assumed that on these oxides, terminal oxygens are mostly missing in the dry state. In solution, these sites are occupied by the oxygen of water molecules; and in the pH region where the oxides exhibit neutral charge densities, the oxygen atoms remain as H$_2$O. Protonation of the bridging oxygen atoms sets in at pH < 4. Once they are protonated they can evolve hydrogen very well in acid and it is possible to obtain the reversible potential of hydrogen if the solution is saturated with hydrogen. It is to be noted that the magnitude of surface charge densities will change if the number of sites accessible to hydrated protons is changed. Nature of protonation will change if there is a structural change in metal–oxygen bonding.

During the cathodic HER process we may envisage the following reactions:

$$M^{3+}OH^- + H_{aq}^+ + e^- \rightarrow M^{2+}OH_2,$$

(2)

$$2M^{2+}OH_2 \rightarrow 2M^{3+}OH^- + H_2,$$

(3)

and/or

$$M^{2+}OH_2 + H_{aq}^+ + e^- \rightarrow M^{3+}OH^- + H_2.$$

(4)

[Here M represents Ru for RuO$_2$, Ru and/or Rh for Ru$_{0.7}$RhO$_{0.3}$O$_2$ and Ir for IrO$_2$] since the surface M$^{3+}$/2$^+$ couple precedes the HER on the cathodic sweep. Observations of $b = 30$ mV/dec for RuO$_2$ and Ru$_{0.7}$RhO$_{0.3}$O$_2$ in the Tafel polarization curves suggest that reaction (2) is the rate-determining step for these oxides. Reaction (3) is the rate-determining step for IrO$_2$, as $b = 40$ mV/dec.

Determination of the fact that the surface oxygen atoms bonded to suitable cations possessing suitable energy levels are the reaction sites for the HER is of great significance. This opens the possibility for designing various oxide materials systematically for various reactions in the fields of catalysis and electrocatalysis.

References

Burke L D and Murphy O J 1979 *J. Electroanal. Chem.* 96 19
Galizzio D, Tantardin F and Trasatti S 1975 *J. Appl. Electrochem.* 5 2032
Trasatti S and Buzzanca J 1971 *J. Electroanal. Chem.* 29 A1