Ruthenium(III) catalyzed oxidation of 1-phenylethanol and substituted 1-phenylethanols by phenyliodosoacetate

K VIJAYASRI, J RAJARAM and J C KURIACOSE*
Department of Chemistry, Indian Institute of Technology, Madras 600036, India

MS received 16 August 1985

Abstract. Ruthenium(III)-catalysed oxidation of 1-phenylethanol and substituted 1-phenylethanols by phenyliodosoacetate (PIA) in acetic acid is studied and a probable mechanism suggested. The proposed mechanism involves the formation of a complex of Ru(III) and (PIA) which reacts with the substrate, S, in a slow step. Spectrophotometric evidence for this complex is presented. Studies on the effect of substituents suggest a transition state involving a π-complex.

Keywords. Oxidation; 1-phenylethanol; Ru(III) catalyst; phenyliodosoacetate.

1. Introduction

Organic substrates like diols, cyclanols and unsaturated systems are oxidized by phenyliodosoacetate (PIA) in the presence of Ru(III) (Radhakrishnamurti and Panda 1979; Pati and Dev 1982). In the present work oxidation of 1-phenylethanol and substituted 1-phenylethanols has been investigated using Ru(III) chloride as the catalyst.

Oxidants like permanganate, chlorine and peroxydisulphate oxidize Ru(III) to higher oxidation states (Cotton and Wilkinson 1972). Of these, Ru$^{6+}$, Ru$^{7+}$ and Ru$^{8+}$ exist only in alkaline medium (Connick and Hurley 1952). A solution of RuCl$_3$ in acetic acid shows an absorption maximum at 460 nm (figure la). A mixture of RuCl$_3$ and excess of PIA shows an absorption maximum at 385 nm (figure lb). PIA absorbs below 320 nm (figure lc). The spectral pattern does not change on adding 1-phenylethanol to RuCl$_3$ in acetic acid (figure la). On adding the substrate to the reaction mixture containing RuCl$_3$ and PIA, the spectral pattern is similar to that of RuCl$_3$. This suggests that the catalyst is released from the complex during the course of the reaction. EPR studies reveal the same splitting pattern for both RuCl$_3$ and for the mixture of RuCl$_3$ and PIA, indicating that there is no change in the oxidation state of Ru(III).

2. Experimental

1-Phenylethanol (Fluka) and ruthenium(III) chloride [Johnson Matthey (London)] were used as such. Acetic acid (BDH, AR) was purified by the method due to Orton (Orton and Bradfield 1950), potassium permanganate being used instead of chromic acid. The fraction boiling between 117° and 118°C (freezing point = 164°C) has been

* To whom all correspondence should be addressed.
used. Phenylidodosoacetate (melting point = 158°C) was prepared by the modified method of Boeseken (Boeseken and Schneider 1931). Solutions of ruthenium(III) chloride in acetic acid were standardised by the method of Horiuchi (Horiuchi and Ichiyoshi 1970). All the reactions have been carried out in glacial acetic acid at 35 ± 1°C. The progress of the reaction was monitored by determining the concentration of unreacted PIA, iodometrically, at any instant as a function of time.

3. Results and discussion

The product of the reaction is found to be acetophenone by TLC, GLC and from the melting point of the 2,4-dinitrophenylhydrazone (250°C). The reaction follows 1:1 stoichiometry under all conditions, i.e. whether PIA or alcohol is in excess. The amount of ketone formed corresponds to that of PIA consumed. The concentration of the ketone has been determined spectrophotometrically by measuring the absorbance at 500 nm of a wine-coloured quinonoid compound (Lappin and Clark 1951) obtained by the action of KOH on a solution of the 2,4-dinitrophenylhydrazone in alcohol. The phenylhydrazine is not affected by the alkali and it absorbs only at 255 nm and 350 nm. The reaction is found to be first order in PIA and first order in catalyst (table 1). The order in substrate is variable being fractional at low concentrations (figure 2) and zero (table 1) at high concentrations (> 0.1 M).

The rate of the reaction is not affected by introducing acetophenone in the reaction.
Ru catalysed oxidation of phenylethanols

Table 1. Effect of varying the concentrations of PIA, Ru(III) and substrate on the rate of the reaction.

<table>
<thead>
<tr>
<th>[PIA] (M)</th>
<th>[S] (M)</th>
<th>[Ru(III)] × 10^6</th>
<th>k' × 10^3 (min⁻¹)</th>
<th>k₁ × 10⁻³ (M⁻¹ min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0.10</td>
<td>2.0</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>0.10</td>
<td>2.0</td>
<td>5.32</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.10</td>
<td>2.0</td>
<td>5.28</td>
<td>2.55 ± 0.10</td>
</tr>
<tr>
<td>0.003</td>
<td>0.10</td>
<td>2.0</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.10</td>
<td>2.0</td>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.10</td>
<td>3.0</td>
<td>7.53</td>
<td>2.59 ± 0.06</td>
</tr>
<tr>
<td>0.010</td>
<td>0.10</td>
<td>4.0</td>
<td>10.40</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.15</td>
<td>2.0</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.25</td>
<td>2.0</td>
<td>5.06</td>
<td>2.55 ± 0.07</td>
</tr>
<tr>
<td>0.010</td>
<td>0.35</td>
<td>2.0</td>
<td>4.95</td>
<td></td>
</tr>
</tbody>
</table>

Solvent: glacial acetic acid; temperature: 35°C; k' = pseudo first order rate constant; k₁ = second order rate constant.

Figure 2. Plots of log rate versus log [S] for low concentrations of the substrate.

mixture. An equilibrium step involving the formation of acetophenone is therefore unlikely.

If the oxidation of alcohols goes through an electron-deficient transition state, one would expect electron releasing substituents to facilitate oxidation. Various substituted 1-phenylethanols have been employed to investigate the effect of the substituents (figure 3, table 2). The slope (ρ) of the Hammett's plot using σ values is −0.4. The substituent effect though small indicates that the substrate is involved in the rate
3.1 Mechanism and rate law

The absence of polymerization of acrylamide added to the reaction mixture indicates that the reaction is not proceeding by a free radical pathway. For Ru(III) catalyzed oxidation, three types of mechanisms could be proposed.

Scheme 1

$$\text{Ru(III)} + S \rightleftharpoons \text{Outer sphere complex}$$

$$\text{Outer sphere complex} + \text{PIA} \xrightarrow{k_2} \text{Products}$$

Here the substrate is represented by S. This mechanism cannot be valid since RuCl$_3$ does not form a complex with 1-phenylethanol (figure 1a). Another mechanism
Ru catalysed oxidation of phenylethanols

(scheme 2) proposed by Singh (Singh et al 1977) to explain the first order in the substrate and zero order in PIA is not applicable for the reaction under consideration since the order with respect to PIA is found to be unity. Moreover IR studies do not show any stretching frequency due to Ru-H at 2020 cm\(^{-1}\) (Hallman et al 1968).

Scheme 2

\[
\text{Ru(III)} + \overset{\text{H}}{\overset{\text{slow}}{\overset{\text{C}_\text{=O}}{\overset{\text{OH}}{\overset{[\text{Ru-H}]^{+2}}{\overset{\text{C}^+}{\overset{\text{OH}}{\overset{\text{fast}}{\text{Ru(III) + 2 AcOH + C}_6\text{H}_5\text{I}}}}}}}}}
\]

Scheme 3 accounts for all the experimental observations satisfactorily.

Scheme 3

\[
\text{Ru(III)} + \overset{k_1}{\overset{k_1}{\overset{[\text{Ru(III)}][\text{PIA}]}{[\text{Transition state}]^\dagger}}}
\]

The rate expression for the above scheme is given as,

\[
\text{Rate} = \frac{k_1k_2[S][\text{Ru(III)}][\text{PIA}]}{k_1 + k_2[S]}
\]

Equation (1) can be rearranged to give (2).

\[
\frac{1}{\text{Rate}} = \frac{k_1}{k_1k_2[S][\text{Ru(III)}][\text{PIA}]} + \frac{1}{k_1[\text{Ru(III)}][\text{PIA}].}
\]

A plot of 1/rate versus 1/[S] for low concentrations (0-02 to 0-08 M) of the substrate at constant concentrations of Ru(III) and PIA is linear (figure 4). From the intercept \(k_1\) is found to be 2.9 \(\times\) 10\(^3\). From the slope and the intercept the value of \(k_1/k_2 = 0.014\). This value is sufficiently small to justify the assumption that \(k_1/k_2 \ll [S]\) for high concentrations of the substrate (0-1 to 0-35 M) where the order in substrate is found to be zero. Under these conditions the rate expression (1) reduces to

\[
\text{Rate} = k_1[\text{Ru(III)}][\text{PIA}].
\]

However [S] being comparable to \(k_1/k_2\) at low concentrations of substrate, a fractional order dependence in the substrate is observed. Evaluation of \(k_2\) is possible if \(k_1/k_1\) is known. Attempts to arrive at this value from spectral measurements were unsuccessful since the absorbance due to Ru(III) is still considerable in the region where a mixture of Ru(III) and PIA absorbs. The postulated mechanism (scheme 3) given
above accounts for all the experimental observations in Ru(III)-catalyzed oxidation of 1-phenylethanol.

Acknowledgements

Financial support during this investigation by the CSIR, New Delhi, is acknowledged by KV. We thank Dr K K Balasubramanian for help in obtaining the spectra and Dr S Subramanian of RSCF for the EPR studies.

References

Boeseken J and Schneider G C C C 1931 J. Prakt. Chem. 131 285
Connick R E and Hurley C R 1952 J. Am. Chem. Soc. 74 5012
Horiuchi Y and Ichiyoyo O 1970 Chem. Abstr. 50624
Lappin G R and Clark L C 1951 Anal. Chem. 23 541
Pati S C and Dev B R 1982 Rev. Roum. Chem. 27 523