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In today’s era tuberculosis is a major threat to human population. The lethality of this disease is caused by very efficiently
thrived bacteria Mycobacterium tuberculosis (M. tuberculosis). Ca2? plays crucial role in maintenance of cellular home-
ostasis. Bacilli survival in human alveolar macrophages majorly depends on disruption in Ca2? signaling. Bacilli sus-
tainability in phagosome lies in the interruption of phagolysosomal fusion, which is possible because of low intracellular
Ca2? concentration. Bacilli contain various Ca2? binding proteins which help in regulation of Ca2? signaling for its own
benefit. For the survival of pathogen, it requires alteration in normal Ca2? concentration in healthy cell. In this review we
aim to find the various Ca2? binding domains which are present in several Ca2? binding proteins of M. tuberculosis and
variety of roles played by Ca2? to survive bacilli within host cell. This manuscript emphasizes the Ca2? binding domains
present in PE_PGRS group of gene family and their functionality in M. tuberculosis survival and pathogenesis.
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Abbreviations used: Ca2?, calcium ions; CAMLP, calmodulin-like proteins; M. tuberculosis, Mycobacterium
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1. Introduction

Tuberculosis (TB) has become a serious disease for the
human population as it infests and persists successfully in
host. Till date the global scenario of cause of TB worldwide
is chaotic (Meena and Rajni 2010; Kumari and Meena
2014). According to a WHO report, TB is the ninth leading
cause of death worldwide and approximately 10.4 million
people fell ill in 2017 (WHO 2017). According to previous
studies, whole genome sequencing of M. tuberculosis pro-
vides better understanding of microbial pathogenesis and
etiology (Cole 1999). A distinct multigene family found in
M. tuberculosis genome consists of two closely related
subfamilies PE (Pro-Glu sequence) and PE_PGRS (Proline-
glutamic polymorphic GC-rich repetitive sequence), which
form 5% of total M. tuberculosis genome (Meena 2015). PE
subfamily consists of 38, while PE_PGRS contains 61
homologous genes which are distributed throughout M.
tuberculosis genome (Tekaia et al. 1999). The PE_PGRS has
conserved N terminal PE domain, which shows high simi-
larity to PE family members and variable C terminal PGRS
domain. PGRS domain contains repeats of Gly-Gly-Ala and

Gly-Gly-X, where X can be any amino acid (Poulet and Cole
1995). PE_PGRS genes encrypt proteins of multiple lengths,
widely varying from range of 175 to 1901 amino acids. The
presence of many related genes in M. tuberculosis infers that
the encoded proteins must play role in survival and growth
of mycobacterial cell within its chosen environment.
PE_PGRS is still very unique to M. tuberculosis as it is not
found in genome of any other organisms (Brennan and
Delogu 2002). So, it makes PE_PGRS genes an exciting
field of research in M. tuberculosis pathogenesis. Previous
studies on these genes showed that they aid as virulence
factor of M. tuberculosis during infection and expressed in
macrophage during granuloma formation in host (Ramakr-
ishnan et al. 2000). PE_PGRS group of subfamily has the
potential to bring strong immune response within host cell
and promote apoptosis and necrosis in eukaryotic cell
(Dheenadhalayan et al. 2006). During invasion of any
pathogen inside the host cell, core atmosphere of the cell
changes leads to the cascade of abnormal events. These cells
require messenger molecules which can act as notable indi-
cator of manipulative events (Shaw and Meena 2016). For
this purpose, Ca2? plays a crucial role by behaving as a
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secondary messenger in the host cell (Clapham 2007). To
effectively endorse a variety of functions by PE_PGRS gene
family, they need a binding domain for Ca2?. Numerous
binding domains are available which effectively control
Ca2?concentration. Abundant host factors affect the varied
functionality of PE_PGRS group of genes during infection.
This article deals with the role and interaction of Ca2? with
PE_PGRS genes in the pathogenesis of M. tuberculosis.

2. Ca21 binding domains in M. tuberculosis

Ca2? shows its effect by changing its intracellular con-
centration, and these alterations are generated by various
Ca2? binding molecules, which in turn decline free Ca2?

concentration within the cell. Ca2? has been reported to
have a major role in phagocytosis of the pathogen through
various receptor-mediated events (Meena et al. 2016).
Ca2? transmits the information via phosphorylation event,
protein interaction or change in gene expression (Hashi-
moto and Kudla 2011). These proteins are predominantly
found in eukaryotes and are well studied, but in
prokaryotes, their role is still not clear (Permyakov and
Kretsinger 2009). According to recent studies, some
common bacteria like Escherichia coli, Bacillus subtilis
and Pseudomonas have shown various gene expression
and cellular processes by varying extracellular Ca2?

concentration, thus indicating the importance of Ca2? in
prokaryotic life (Patrauchan et al. 2007; Naseem et al.
2009; Oomes et al. 2009; Bilecen and Yildiz 2009;
Dominguez 2011). Further, whole genome sequencing
showed the presence of Ca2? binding domains in M.
tuberculosis. Ca2? binding proteins have different
domains like EF-hand domain, helix-loop-helix, Greek
key motifs of bc-crystalline, etc. (Yang 2001; Michiels
et al. 2002; Rigden et al. 2003; Zhou et al. 2006; Aravind
et al. 2009). There is a need to further investigate and find
the role of Ca2? binding proteins in prokaryotes.
Calmodulin (CaM) is a widely known Ca2? binding pro-
tein family which plays a major role in Ca2?-mediated
signaling in various cellular responses. CaM is a sensor
protein which has 4 EF-hand motifs and binds to Ca2?

whenever its concentration increases, thus simultaneously
altering various enzymatic activities (Cheung 1982).
Increase in cytoplasmic Ca2? is known to bring structural
change in CaM by altering the structure of CaM-depen-
dent protein kinase-II (CamKII) (Harmon et al. 1985). In
prokaryotes, calmodulin-like proteins (CAMLP) were
discovered in Bacillus subtilis (B. subtilis) and Escher-
ichia coli (Fry et al. 1986). Later, the presence of CAMLP
was shown in various strains of M. tuberculosis, like
Mycobacterium bovis (M. bovis), Mycobacterium smeg-
matis (M. smegmatis), Mycobacterium phlei (M. phlei)
and M. tuberculosis (Burra et al. 1991; Burra et al. 1995;
Falah et al. 1988; Sharma and Meena 2017). Further, it
was revealed that bacterial CAMLP have homology with

eukaryotic CaM in terms of binding domain, like EF-hand
domain with different binding sites. Recently, it was dis-
covered that the product of gene Rv1211 of M. tubercu-
losis H37Rv is an effective CAMLP, as it shows the Ca2?-
dependent activation of PDE (phosphodiesterase) and
NAD (Nicotinamide adenine dinucleotide) kinase, which
is exact feature of eukaryotic calmodulin (Reddy et al.
1992; Koul et al. 2009). Ca2? signaling pathway is one of
the major tracks other than MAPK (mitogen-activated
protein kinase) and IFN-c (interferon-gamma), which is
used by M. tuberculosis bacilli to prevent phagosome–
lysosome fusion within host (Koul et al. 2004).
Phagolysosome formation, phagosome acidification,
recruitment of lysosomal hydrolases, etc., are results of
alteration in cytoplasmic Ca2? concentration (Harmon
et al. 1985). In eukaryotic cells, Ca2? concentration is low
comparted to the extracellular matrix because several
cellular organelles like endoplasmic reticulum, mito-
chondria, etc., sequester the Ca2? ions and maintain a
sharp gradient of Ca2? along the wall of the organelles
(Gilabert 2012; Shaw and Meena 2016). In similar manner
prokaryotic cells also uphold the gradient of cytosolic
Ca2? ions, but the mechanism behind it is still ambiguous
(Torrecilla et al. 2000; Jones et al. 1999; Zhou et al.
2006). Possibly, some kind of CAMLP is required by
bacterial cells to maintain the transient change in Ca2?

concentration. Proteomic analysis of B. subtilis by
autoradiography suggested that various protein compo-
nents bind with Ca2? (Dominguez 2011). In prokaryotic
cells, Ca2? is stored in periplasmic space, which functions
as barrier to Ca2? entry and plays a major role in Ca2?

homeostasis across the membrane (Gangola and Rosen
1987).

3. Ca21 binding motif

PE_PGRS genes family is one of the unique gene sequences
in genome analysis, as it is confined to only M. tuberculosis
H37Rv strain (Copin et al. 2014). RTX (repeats in toxin)
superfamily is a group of exoproteins that act as cytolysins
and cytotoxin secreted by bacteria. These family proteins
possess two distinct features, a unique way of exporting
across the bacterial wall, and they have tandem repeats of
nonapeptide GGXGXD/NXUX, where X represents any
amino acid and U is non-polar or hydrophobic large residue
which binds to Ca2? (Coote 1992; Baumann et al. 1993).
These nonapeptide repeats craft a Ca2? binding motif pop-
ularly known as parallel b-helix or b-roll (Lilie et al. 2000).
Due to the presence of these nonapeptides, various
PE_PGRS gene family members are also stated as cell sur-
face exposed adhesion molecules (Delogu et al. 2004;
Sachdeva et al. 2005) which further involve in pathogenesis
(Bachhawat and Singh 2007). Oddly, 56 of 61 PE_PGRS
genes consists of these nonapeptide sequence; however, their
functional characterization is still ambiguous (Michiels et al.
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2002). Another domain, namely, EF-hand, is present, which
is about 70 to 184 amino acids in length, possessing high
phenylalanine/tyrosine ratio (Yeruva et al. 2016). Ca2?

binding domain in this superfamily is flanked by two a-
helices which consist of acidic amino acids (Kretsinger
1976). Dx[DN]xDGx[ILV][DSTN]x is the sequence pattern
which typically constitute Ca2? binding loop with minor
changes in others (Rigden and Galperin 2004). Another
widely found Ca2? binding domain is Greek key motif of
bc-crystalline (Wistow 1990) in which Ca2?coordination is
conserved as N/D-N/D-#-I-S/T-S, in which # residue offers
the carbonyl chain and I residue provides the hydrophobic
core of the domain (Srivastava et al. 2014). This motif
requires unique ser/thr hydroxyl group for Ca2? binding (Lin
et al. 2008). Yet another Ca2? binding domain is Big
domain, which is related to a group of proteins having
immunoglobulin-like Ca2? binding domains (Halaby et al.
1999). It is recognized in several enzymes, transporters,
molecular chaperons and other membrane-bound proteins
(Raman et al. 2011). Although the nature of binding domain
is not identified, tandem repeats of DNSNKDIT-
SAVTDxSNxDxxSxVT sequences are present (Arockiasamy
et al. 2011). A very unique and distinctive Ca2? binding
domain is reported in M. tuberculosis gene Rv0379 which
has 71 kDa protein and is thought to be involved in protein
transportation as secE2 (Barnham et al. 2003). This protein
is identified as Ca2? dodecin by its crystal structure, which is
not seen anywhere else in the genome. The folds of Ca2?

dodecin show similarity as copper binding domain of amy-
loid precursor protein of Alzheimer’s disease (Ikura et al.
2002), as shown in table 1. Variety of Ca2? binding domains
are found in prokaryotic organisms with wide structural

range, and binding of Ca2? to these proteins confers various
structural deformations, which affect structural or functional
changes in cell.

4. Varied roles of Ca21 in M. tuberculosis pathogenesis

Ca2? is an important and multipurpose molecule which is
used by cells in their growth and proper functionality,
whether they are prokaryotic or eukaryotic. It is a key ele-
ment to convey various cellular messages intracellularly and
regulates normal routine tasks of cell (Sanders et al. 1999;
Berridge et al. 2000; Berridge et al. 2003; Hashimoto and
Kudla 2011; Zampese and Pizzo 2012). The amount of free
Ca2? within the cell rapidly changes according to stimulus
and varied concentration of Ca2?, which in turn is sensed by
cell to respond in a particular direction. Ca2? concentration
is not solely enough to make change in cellular processes; it
also depends on signal specifications like its speed, fre-
quency and magnitude (Jayachandran et al. 2007). In
response to stimulus initiated by Ca2? signaling, a chain of
downregulated Ca2? binding proteins are activated, which
further aids in progression of the signaling pathway. During
aerosol transmission of bacilli, they get engulfed by alveolar
macrophages through phagocytosis. The foremost step of M.
tuberculosis survival within host is to inhibit the formation
of phagolysosome (Ferrari et al. 1999). FnBPs binds with Fn
through integrin receptor and initiates PKCa (protein kinase
C alpha) pathway. This increases Ca2? concentration in cell
and initiates several signaling cascade. Coronin/TACO is
activated by calcineurin, which is Ca2?- and calmodulin-
dependent ser/thr phosphatase. It is also an actin binding

Table 1. List of various Ca2? binding domains and proteins in M. tuberculosis

Calcium binding
motif

Binding sequence Description Calcium binding proteins in
M. tuberculosis

References

Parallel b-helix
or b-roll

GGXGXD/NXUX X is any amino
acid, U is
unpolar or
hydrophobic
large residue

PE_PGRS family binding
proteins

Gilabert (2012), Jones et al.
(1999), Torrecilla et al.
(2000), Gangola and

Rosen (1987), Copin et al.
(2014), Coote (1992),
Baumann et al. (1993)

EF-hand
binding motif/
domain

Dx[DN]xDGx[ILV][DSTN]x
DXDXDG

Two a helices
which consist of
acidic amino

acids

Rv1211 contains one
prototypic calcium binding

EF-hand motif

Lilie et al. (2000), Delogu
et al. (2004), Sachdeva
et al. (2005), Koul et al.

(2009)
Greek key motif N/D-N/D-#-I-S/T-S, # Unique ser/thr

hydroxyl group
Calmodulin-like proteins Rigden et al. (2003),

Bachhawat and Singh
(2007), Michiels et al.

(2002)
Big domain DNSNKDITSAVTDxSNxDxxSxVT Immunoglobulin-

like Ca2?

binding
domains

Leptospira immunoglobulin-
like protein

LigA and LigB

Yeruva et al. (2016),
Kretsinger (1976), Rigden

and Galperin (2004)

Ca2? dodecin Rv0379 of M. tuberculosis Like copper
binding domain

Calcium dodecin (Rv0379) Wistow (1990), Srivastava
et al. (2014)
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protein which adheres at phagosome membrane and prevents
the maturation of phagosome containing bacilli (Majeed
et al. 1998; Trimble and Grinstein 2007). Generally, higher
Ca2? concentration is required in phagocytosis process.
Therefore, elevated level of Ca2? ion is used by bacilli in
favor of its own sustainability (Malik et al. 2000; Vergne
et al. 2003). Higher concentration of Ca2? minimizes severe
immune response during Mtb infection and also inhibits
heavy inflammation. Majorly, calmodulin is the molecule
which binds Ca2? and initiates PKCa and CAMKIIg
(Ca2?/calmodulin-dependent protein kinase II gamma) (Ya-
dav et al. 2004; NYU 2015). According to a recent study,
use of siRNA and inhibitors of CAMKIIg depicts that it is
pro-apoptotic and critical for activation of ERK1/2 (extra-
cellular signal regulated kinases). By inhibiting ERK1/2,
production of NOS2 (nitric oxide synthase 2) and NO (nitric
oxide) also decrease. In Mycobacterium fortuitum, it had
been reported that ERK1/2 and NOS2 axis activation
through PKCa pathway is important for caspase-dependent

apoptosis (Banerjee et al. 2014). Earlier studies also revealed
that Rv2463 and Rv3416 genes ofM. tuberculosis involve in
neddylation, which is a process similar to ubiquitination in
which NEDD8 protein binds to its target proteins having its
own E1 and E2 enzymes (Datta et al. 2016). These genes
modulate NEDD8 and cullin-1 association. This connotation
also belongs to Ca2? and MAPK-dependent pathway which
suppresses host immune system via modulating neddylation
process in dendritic cells (Huang et al. 2004; Chadha et al.
2015). One of the genes Rv0805 is dinuclear metallohy-
drolase and involves in signal transduction by binding of two
divalent metal ions (Podobnik et al. 2009). Ca2? also binds
with Rv0805 but the binding sites are different. Here Ca2?

acts as an activator of enzymatic activity and also promotes
the hydrolysis of substrate even in the absence of metal ions
(Shenoy et al. 2007). Some studies also suggest the
involvement of VGCC (voltage-gated Ca2? channel) in
regulation of M. tuberculosis survival and pathogenesis
inside host. VGCC are the Ca2?-permeable channels found

Figure 1. Schematic representation of multiple roles played by Ca2? in context to Mtb survival and pathogenesis inside host cell.
Invasion of bacilli in healthy macrophage cell initiates after binding of FnBP proteins with integrin receptor present on cell membrane. This
binding initiates Plc-c pathway, which dissociates its substrate PIP2 (Phosphatidylinositol 4,5-bisphospahte) into DAG (Di-acyl glycerol)
and IP3. IP3 activates Ca2? channel present on ER, which enhances intracellular Ca2? level. This increased level of Ca2? is necessary for
phagocytic action of macrophage. Mtb manipulates this signaling by using its various Ca2? binding proteins. Ca2? binds to CAM, which
activates CAMKIIg and Calcinuerin. Calcinuerin activates TACO or coronin protein, which binds with the membrane of phagosome
inhibits lysosome. Another Ca2?-dependent protease calpain activates and initiates necrosis in neutrophils. The other component of PIP2 is
DAG, which initiates PKC pathway, which in turn activates NF-jB and MAPK pathway. MAPK pathway induces neddylation in dendritic
cells. Rv2463 and Rv3416 are Mtb proteins which increased the surface level expression of VGCC (Voltage gated calcium channel). There
is another way to infect macrophage through PE_PGRS genes having Ca2? binding domain. These proteins interact with TLR2 receptor
and change the IL-10 signaling in favor of bacilli survival. There are yet undiscovered paths which are activate by PE_PGRS proteins.
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in excitable membranes. One of the gene of M. tuberculosis,
Rv2463, was reported to regulate VGCC surface expression
in host cells (Nejatbakhsh and Feng 2011), where Ca2?

plays a key role in the appearance of CACNA 1S (a gene
belong to a family which provide instructions for the for-
mation of Ca2? channel). This regulation is directed by
MyD88-independent TLR pathway in which transcription
factor pCREB and STIM 1 and STIM 2 (stromal interaction
molecule 1 and 2), which are ER-associated Ca2? sensors,
are also involved. Fascinatingly, ROS (reactive oxygen
species) plays negative role in the expression of CACNA 1S
which revealed that ROS and pCREB cross-regulate and
direct this pathway (Antony et al. 2015). PE_PGRS genes
containing nona-domain have the ability to bind with Ca2?

and initiate infection in macrophage through TLR2 (toll-like
receptor). This binding modifies IL-10, an anti-inflammatory
interleukin, signaling. One recent study reported that these
proteins binds TLR2 with lower affinity when Ca2? con-
centration is depleted within cell. It revealed the importance
of PE_PGRS with Ca2? in M. tuberculosis pathogenesis
(Yeruva et al. 2016), as shown in figure 1. As PE_PGRS
family proteins possess both Fn and Ca2? binding domains,
they act as adhesion as well as signaling molecules (Meena
and Meena 2016 and Monu and Meena 2016). According to
another report, in Leptospira species, LigB protein con-
taining Fn and Ca2? binding domain revealed that its
binding with Fn during adhesion is enhanced by the pres-
ence of Ca2?. So, we can say that availability of Ca2? in host
cell boosts the attachment of pathogen with membrane (Lin
et al. 2008). To know the role of Ca2? further in the
pathology of M. tuberculosis, we need detailed signaling
inputs and outputs of bacilli infection in host cell.

5. Summary

Ca2? is a multipurpose molecule in maintenance of cellular
homeostasis. Ca2? acts as an important signaling molecule
in all aspects of cell growth. To modulate cell functionality,
different Ca2? binding proteins are involved in changing
Ca2? concentration. It is also a multifaceted molecule which
enhances several pathways and regulates the immune cells
during any pathogenic infection. To enhance the bacterial
survival within host, low Ca2? concentration is maintained.
This is achieved by the presence of various Ca2? binding
proteins in M. tuberculosis. These Ca2? binding proteins
further manipulate the Ca2? signaling so as to benefit bacilli
survival. PLC-c pathway is the basic signaling cascade of
Ca2?. Calcinuerin promote the inhibition of the basic
phagocytic function of cell, i.e. fusion of phagolysosome.
Varied Mtb proteins having variety of Ca2? binding domains
enhance the binding efficiency and produce different results,
which help bacteria to remain inside the cell. The intercon-
nection of Ca2?and PE_PGRS proteins in the pathogenic
aspect of bacilli has provided interesting facts: PE_PGRS
family members of proteins are involved in adhesion and as

signaling modulator by working as an FnBP and Ca2?

binding proteins. To know the deep molecular mechanism
behind the survival of bacilli in host cells, we need to elu-
cidate the variety of role played by Ca2? and its binding
proteins with major emphasis on PE_PGRS members.
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