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Reduction of dimensionality has emerged as a routine process in modelling complex biological systems. A large number

of feature selection techniques have been reported in the literature to improvemodel performance in terms of accuracy and

speed. In the present article an unsupervised feature selection technique is proposed, using maximum information

compression index as the dissimilarity measure and the well-known density-based cluster identification technique

DBSCAN for identifying the largest natural group of dissimilar features. The algorithm is fast and less sensitive to the

user-supplied parameters. Moreover, the method automatically determines the required number of features and identifies

them. We used the proposed method for reducing dimensionality of a number of benchmark data sets of varying sizes. Its

performance was also extensively compared with some other well-known feature selection methods.

[Sengupta D, Aich I and Bandyopadhyay S 2015 Feature selection using feature dissimilarity measure and density-based clustering: Application to

biological data. J. Biosci. 40 721–730] DOI 10.1007/s12038-015-9556-y

1. Introduction

Bioinformaticians frequently face the challenge of reduc-

ing the number of attributes of high-dimensional biolog-

ical data for improving the models involved in sequence

analysis, microarray analysis, spectral analysis, literature

mining, etc. 21. Feature selection is useful for multiple

reasons. The main objectives of feature selection are as

follows: (a) accelerating the model creation task; (b)

avoiding model over-fitting or under-fitting; (c) identify-

ing the salient features, which are decisive of the target

categories. Feature selection is widely used in classifica-

tion, clustering, regression, etc. A typical feature selec-

tion process consists of four basic steps for finding the

optimal set of features: subset generation, subset evalu-

ation, stopping criterion and result validation 4. Feature

selection methods can be categorized as either filter or

wrapper 11. A third category called hybrid can be in-

troduced to encompass the rest of the methods. Filter

methods pick up relevant features by observing their

intrinsic properties 21. These methods generally assign

some score to each of the features while evaluating them

in isolation. These methods scale up well due to their

simplicity. The major disadvantage of such methods is

that they ignore the relationship of features with the

existing classes. GINI index, F-score, Relief-F 13 and

Markov Blanket filter 14 are some popular filter

methods. Unlike filter methods, wrapper methods learn

from the natural grouping of data. These methods pro-

duce a subset of features that can efficiently differentiate

between classes or clusters. Wrapper methods can be

supervised as well as unsupervised in nature. Supervised

wrapper approaches utilize class label information to

evaluate feature sub sets. Such methods are often com-

putationally expensive as they tend to do a rigorous

search in the respective feature space. Genetic

algorithm-based supervised feature selection approaches

(Pal and Wang 1996; Tan et al. 2006; Mukhopadhyay
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et al. 2009) are popular as wrapper methods. Unsuper-

vised wrapper methods are becoming increasingly popu-

lar because of their lower time requirement compared to

the supervised ones. Principal Component Analysis

(PCA) and MICI (maximum information compression

index) (Mitra et al. 2002) are popular among these. An

interesting hybrid filter-wrapper approach is introduced

in Ruiz et al. (2006), crossing a univariately pre-ordered

feature ranking with an incrementally augmenting wrap-

per method.

Biological data sets usually contain hundreds and

thousands of features. For microarray data sets contain

many thousands genes (about 5,000–30,000). These data

sets are frequently use molecular classification of various

life-threatening diseases like cancers (Golub et al. 1999).

Reducing the dimensionality of biological data sets is

essential to avoid model over-fitting. Filter methods are

preferably use to reduce dimensionality of such data

sets. Some frequently used filter methods are F-score,

χ2, Euclidean distance, i-test, Information Gain, etc. 21.

Filter methods work well for simple cases, where dis-

tinction between different classes are quite obvious and

apparent. However, in many complex cases these

methods fail to give much insight into the molecular

differentiation. PCA is a reasonably fast, unsupervised

wrapper method, which is commonly used in such cases.

However, PCA fails discriminate classes when classes

overlap along the direction of maximum variance of

the instances. In practice, feature extraction based on

PCA often suffer from the problem of under-fitting.

Unsupervised methods are indispensable when labeled

instances are not available. For example, single cell

RNA-sequence data analysis, which reveals tissue het-

erogeneity require single cells to be mapped to known

cell types (Jaitin et al. 2014). Only filter or unsupervised

wrapper techniques can be used to reduce dimensionality

in such studies.

A disadvantage of the MICI (maximum information

compression index) based approach lies with the use of

k-NN-based clustering algorithm for finding clusters of

features based on their similarity (Mitra et al. 2002). It

is a common knowledge that any method based on k-NN

principle is somewhat sensitive to the choice of k.

Moreover, their approach of selecting a representative

features from each of the clusters of similar features

tends to discard important (dissimilar) features when

the clusters are large in size. In contrast, if clusters of

dissimilar features are identified, loss of important fea-

tures can be minimized by selecting the largest among

the clusters. Additionally, it is always preferred that the

number of features is determined automatically by the

feature selection technique itself. To address these issues

we propose a feature selection method that works by

discovering natural groups of dissimilar features. We

show that the larger eigenvalue of the covariance matrix

derived from a pair of features is inversely proportional

to their dissimilarity, thereby making it an appropriate

distance for obtaining group of dissimilar features. It is

to be noted here that the present method is inspired by

the work in (Mitra et al. 2002), with notable differences.

Moreover a comparison with (Mitra et al. 2002) is also

provided in the Results section.

An extensive comparison of the proposed method

with several state-of-the-art techniques, viz. MICI (max-

imum information compression index) (Mitra et al.

2002), mRMR (Max-Dependency, Max-Relevance and

Min-Redundancy) (Peng et al. 2005), SFFS, SFBS

(Pudil et al. 1994), SBS, SFS, and Branch and Bound

(Devijver and Kittler 1982), demonstrate its significance

and effectiveness. For ease of reference the proposed

feature selection technique is named as Feature Selection

using Information Compression Index, or FSICI.

The rest of this paper is organized as follows: In

section 2 we explain how the larger eigenvalue corre-

sponding to the covariance matrix derived from a pair of

features can be used to find cluster of dissimilar fea-

tures. In this section we also describe various compo-

nents as well as the computational complexity of the

algorithm. In section 3 we compare the performance of

FSICI with multiple established feature selection tech-

niques. In this section we also provide statistical evi-

dence for superior performance of FSICI. A brief

analysis is also done to evaluate sensitivity of the ap-

proach to the required parameters. We conclude the

paper in section 4.

2. Method

The proposed feature selection technique involves three

steps: First, all dissimilarities between all possible pairs of

features are measured using the principle of linear projec-

tions (described later in this section). Natural groups of

dissimilar features are then identified using DBSCAN, the

density based clustering method (Ester et al. 1996). Fi-

nally, the cluster containing the maximum number of

features is selected. The reasons for using DBSCAN for

clustering are following: (1) DBSCAN is capable of

determining outlier; (2) it does not require the possible

number of clusters as a input; and (3) it can discover

arbitrary shaped clusters. The steps involved in the pro-

posed feature selection method are illustrated below:
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2.1 Steps of FSICI

2.1.1 Measuring feature dissimilarity: Although correlation

coefficient is one of the obvious choices for tracking linear

dependency between two variables x and y, it has the following

shortcomings: the measure is invariant to scaling and translation

of the variables and is sensitive to rotation of the scatter diagram

in the (x,y) plane. Least square regression, on the other hand, is

not symmetric and also sensitive to rotation. In (Mitra et al.

2002), the authors used the smaller eigenvalue of the

covariance matrix of random variables x and y in order to

quantify information loss between a pair of features. In the

following derivation we show how the larger eigenvalue can

be used as a measure of feature dissimilarity.

Let x and y be two random variables and the covariance

matrix of x and y be Σ:

X

¼
v a r xð Þ cov x; yð Þ
cov x; yð Þ v a r yð Þ

� �

:
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where I denotes an identity matrix and ϱ(x,y) denotes the

Pearson’s correlation coefficient between x and y. For

simplicity the smaller and larger eigenvalues are referred

to as λ2 and λ1 respectively. It is apparent from Equation 1

that the value of λ2 tends to 0 as the absolute value of

ϱ(x,y) increases. Note that λ1 is directly proportional to

the dependency between x and y, i.e. λ1 increases as the

amount of dependency increases. Hence, if we use λ1 as

the similarity measure, we obtain dissimilar features

grouped while employing any clustering technique. Max-

imum information compression is achieved if the bivariate

(or multivariate) data is projected along its principal com-

ponent direction. The corresponding loss of information in

reconstruction of the pattern is equal to the eigenvalue

along the direction, normal to the principal component.

Hence, higher value of λ1 indicates smaller amount of

information loss or higher amount of information com-

pression or increased similarity. Therefore, clustering fea-

tures using λ1 as the distance measure would produce

clusters of dissimilar features.

2.1.2 Clustering of features:Density-based clustering techniques

identify regions of high density that are separated from one

another by regions of low density. Density threshold is

usually defined by the presence of a minimum number of

data points (MinPts in Algorithm 1) within a specific radius

(Eps in Algorithm 1). DBSCAN, the most popular density

based technique discriminates the core, border and noise

data points in terms of their surrounding density

configuration (Ester et al. 1996). Core point is a point that

satisfies the density requirement, border point is one that

does not satisfy the density requirement but falls in the

neighbourhood of a core point, and noise point is one

which is neither a core point nor a border point. The

points are connected based on density reachability. A

point p is directly density-reachable from another point q

if p belongs to the neighbourhood of q and q is a core point.

Given Eps and MinPts, a point p is said to be density-

reachable from q if there is a chain of points p1,....pn,

p1=q, pn=p s.t. pi+1 is directly density reachable from pi.

Note that Eps, in this case is nothing but a fixed upper limit

of λ1 (see the result tables). The pseudo-code of DBSCAN
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(Ester et al. 1996) using λ1 as similarity measure is shown

in Algorithm 1.

2.1.3 Selection of a set of important features: The largest cluster

obtained from the density-based clustering of the features is

selected and the features included in the cluster are considered

to be the reduced set of features. There could be alternative

approaches for finding the most comprehensive cluster of

features.

2.2 Computational complexity of FSICI

Most of the existing supervised or unsupervised feature

selection indices like entropy, class seperability, k-NN

classification accuracy have at least quadratic time com-

plexity, whereas the proposed linear dependency measure

has a complexity O(l) (l is number of samples). On the

other hand, the clustering algorithm DBSCAN has an

overall runtime complexity O(nlogn) (n is number of

features). Note that the time complexity is mostly

governed by the number of getNeighbors() calls, resulting

in a complexity O(l*n). DBSCAN executes exactly one

such call for each feature, and an indexing structure is

used that executes such a neighbourhood query in

O(logn). Therefore, the overall run time complexity of

FSICI is computed as O(l.n.logn). The computational

complexity of MICI is O(n2l). If the desired dimension

is denoted by d, the complexity of SFFS and SFBS are in

O(d). However, this is massively increased at the time of

supervision. Time complexity of Relief-F is O(m.l.n),

where m is a constant that determines number of itera-

tions required to estimate weights of features.
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3. Results

We used various benchmark data sets to evaluate the perfor-

mance of the proposed algorithm and compare that with the

performance of other existing techniques. Data sets with

varying dimensions are selected for comprehensive analysis.

In total 9 data sets and 8 existing algorithms were used for

comparison purposes. Credibility of a set of selected features

was determined by the classification accuracies obtained

using that. Wilcoxon signed-ranks test was used to evaluate

the statistical significance of the observed performance by

our algorithm. Finally, we also examined dependency of the

proposed method on the user definable parameters.

3.1 Description of various benchmark data sets

The real-life public domain data sets, which are used in our

experiments can be categorized into three types: low-

dimensional (dim<30), medium-dimensional (30≤dim<100)

and high-dimensional (dim>100). The details related to the

experimental data sets furnished in table 1. From table 1 it is

clear that low-dimensional data sets include breast cancer,

Statlog (heart) and Parkinson’s data sets, medium-

dimensional data sets include WDBC and dermatology data

sets and high-dimensional data sets include arrhythmia, co-

lon cancer data sets, LYMPHOMA and leukaemia data sets.

3.2 Experimental set-up and brief analysis of results

We demonstrates the effectiveness of our proposed feature

selection technique on seven biological data sets of varying

dimensionality (stated at the beginning of this section). The

classification accuracies obtained using different classifiers

trained with the FSICI suggested features are compared to

those obtained using the features suggested by some well-

known feature selection methods. Note that all accuracies

reported in this study were obtained from 10-fold cross-

validation. Seven popular feature selection techniques,

namely, MICI (maximum information compression index)

(Mitra et al. 2002), mRMR (Max-Dependency, Max-

Relevance and Min-Redundancy) (Peng et al. 2005), SFFS,

SFBS (Pudil et al. 1994), SBS, SFS, and Branch and Bound

(Devijver and Kittler 1982) were considered in our experi-

ments. The following brief descriptions about some used

feature selection methods:

MICI: Minimum Information compression index is an

unsupervised wrapper method for feature selection that

uses nearest-neighbour-based novel unsupervised cluster-

ing to find groups of similar features. Finally it uses some

representative features obtained from each of the clusters.

Table 1. Experimental data sets

Data set Dim. Samples Class Ref.

Breast-cancer 9 683 2 UCI-MLR

Statlog (Heart) 13 270 2 UCI-MLR

Parkinson’s 22 195 2 UCI-MLR

WDBC 30 569 2 UCI-MLR

Dermatology 34 358 6 UCI-MLR

Arrhythmia 259 452 13 UCI-MLR

Colon Cancer 2000 62 2 Alon et al. 1999

Lymphoma 4026 96 8 Alizadeh et al. 2000

Leukaemia 7129 72 2 Golub et al. 1999

UCI-MLR: The data sets are available in UCI Machine Learning
Repository (Blake and Merz 1998).

Table 2. Classification results of the data sets without feature selection

Full data set

Classifiers

NB k-NN AdaBoost SVM

Mean SD Mean SD Mean SD Mean SD

Breast-cancer 95.77 ±1.27 95.64 ±1.03 95.07 ±0.88 94.27 ±0.77

Statlog (Heart) 79.13 ±3.35 74.19 ±4.26 72.22 ±6.41 54.86 ±0.99

Parkinson’s 70.51 ±3.61 78.40 ±4.56 78.67 ±4.63 74.68 ±0.38

WDBC 93.12 ±0.75 92.83 ±1.43 92.01 ±2.15 62.72 ±.70

Dermatology 86.52 ±4.00 88.32 ±3.45 45.93 ±3.24 57.14 ±5.17

Arrhythmia 54.98 ±2.97 48.97 ±3.71 49.29 ±6.66 54.37 ±0.73

Colon Cancer 56.07 ±9.42 58.57 ±8.41 48.75 ±9.41 57.14 ±10.3

Lymphoma 87.07 ±2.51 96.57 ±4.32 96.33 ±4.22 97.61 ±1.8

Leukemia 96.13 ±1.18 82.7 ±2.41 96.14 ±4.23 97.82 ±1.03

NB: Naive Bayes classifier, k-NN: k-Nearest Neighbour classifier.
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mRMR: mRMR (Max-Dependency, Max-Relevance

and Min-Redundancy) uses mutual information based

method for selecting non redundant features.

Sequential methods: Sequential forward selection

search (SFFS) starts with a null feature set and, for each

step, the best feature that satisfies some criterion func-

tion is included with the current feature set. This is

basically nothing but one step of the sequential forward

selection (SFS). The algorithm also verifies the possi-

bility of improvement of the criterion if some feature is

excluded. In this case, the worst feature is eliminated

from the set, that is, it is performed one step of sequen-

tial backward selection (SBS). Therefore, the SFFS

proceeds dynamically increasing and decreasing the

number of features until the desired d is reached.

Branch and Bound: Branch and bound is an exact

method, which employs backtracking. This is an opti-

mal method for monotonic feature set.

Relief-F: It is a supervised filter method that computes

weight for each feature based on some probabilistic

supervision.

Naive Bayes, k-NN (k=1), AdaBoost (number of itera-

tions =10, weight threshold =100) and SVM (RBF kernel,

cost =1 and gamma =0) are used for the classification tasks

(Weka libraries are used with default parameters [Hall et al.

2009]). Classification accuracies are first measured without

performing any feature selection. In the case of Parkinson’s,

WDBC, dermatology and colon cancer data, FSICI helps

classifiers obtain the best accuracies, whereas for rest of

Table 3. Comparison results of different feature selection algorithms for small data sets

Data set

Evaluation criteria

Feature selection method

MICI SFS SFFS SBS SFBS BB Relief-F mRMR FSICI
Breast cancer NB Mean 95.11 95.51 95.20 95.46 94.15 95.87 95.06 96.00 95.90

SD ±0.53 ±1.32 ±0.94 ±1.17 ±0.93 ±0.48 ±1.86 ±0.526 ±1

k-NN Mean 93.45 95.56 94.80 94.94 93.07 94.33 95.76 95.54 95.66

SD ±1.37 ±1.05 ±0.97 ±0.55 ±2.21 ±1.34 ±0.666 ±1.26 ±0.884

D=9 AdaBoost Mean 94.46 95.40 93.72 95.32 92.85 93.98 94.73 94.99 95.27

d=4 SD ±0.511 ±1.75 ±1.52 ±0.557 ±1.87 ±2.03 ±1.35 ±1.44 ±0.783

Minpts=2 SVM Mean 94.67 96.07 95.45 95.77 94.26 95.76 94.62 95.30 96.05

Eps=1.97e-02 SD ±0.366 ±0.873 ±0.707 ±0.398 ±0.715 ±0.643 ±0.824 ±0.82 ±0.767

CPU TIME - 0.054 1.250 1.750 1.219 1.906 4.734 1.180 1.27 0.041

Statlog heart NB Mean 72.47 76.30 74.44 78.52 75.68 80.58 77.00 68.69 79.38

SD ±2.7 ±4.85 ±2.56 ±6.80 ±2.36 ±2.01 ±2.02 ±2.70 ±2.27

k-NN Mean 69.59 73.62 73.00 77.08 70.62 73.70 74.20 62.23 76.05

SD ±3.80 ±2.28 ±3.38 ±3.83 ±5.45 ±4.07 ±3.77 ±5.90 ±1.69

D=13 AdaBoost Mean 69.38 74.44 74.77 76.30 74.28 75.93 74.57 66.23 76.71

d=5 SD ±5.13 ±2.11 ±2.21 ±2.32 ±6.01 ±4.7 ±1.9 ±4.98 ±2.78

Minpts=2 SVM Mean 53.70 73.05 72.92 77.28 74.77 78.77 75.97 51.88 74.17

Eps=1.87e-02 SD ±3.92 ±5.59 ±3.56 ±2.05 ±4.13 ±2.88 ±1.9 ±4.66 ±2.29

CPU TIME - 0.031 1.625 2.500 5.707 6.202 7.782 5.920 1.450 0.020

Parkinson’s NB Mean 73.20 73.37 71.31 72.23 69.26 65.66 73.43 71.77 76.60

SD ±3.54 ±2.12 ±2.28 ±3.84 ±2.82 ±4.79 ±3.33 ±3.87 ±3.04

k-NN Mean 80.11 74.11 77.26 74.40 73.14 72.28 77.20 78.22 82.69

SD ±4.57 ±2.57 ±4.36 ±3.06 ±2.07 ±3.26 ±2.62 ±4.96 ±4.19

D=22 AdaBoost Mean 79.31 78.11 78.40 76.80 72.06 73.85 75.14 79.54 80.23

d=11 SD ±3.16 ±4.59 ±4.94 ±2.04 ±3.56 ±7.19 ±3.83 ±5.17 ±3.43

Minpts=2 SVM Mean 74.91 76.51 76.57 75.09 74.34 74.57 73.94 74.17 74.40

Eps=5.01e-05 SD ±0.684 ±4.33 ±4.41 ±0.552 ±0.50 ±0.774 ±1.38 ±1.66 ±0.59

CPU TIME - 0.063 2.360 1.120 3.875 4.235 295.219 1.080 2.640 0.051

MICI: Feature selection using MICI, SFS: Sequential Forward Search, SFFS: Sequential Forward Floating Selection, SBS: Sequential
Backward Search, SFBS: Sequential Forward Backward Selection, BB: Branch and Bound, NB: Naive Bayes classifier, mRMR: Max-
Dependency, Max-Relevance and Min-Redundancy, k-NN: k-Nearest Neighbour classifier, D: Number of original features, d: Number of
selected features using FSICI. The boldfaced values indicate the top two among the achieved average accuracies.
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the data sets, FSICI leads to at least the second best results.

FSICI performs well consistently in conjunction with differ-

ent classifiers, which is really promising. The 10-fold cross-

validation accuracies are furnished in tables 2–5. For cancer

and Statlog heart data, SFS and Branch and Bound

(respectively) perform nominally better than FSICI. Across

all the data sets it is evident that FSICI selected features

produce either the best or the second best of all the reported

accuracies. The other important observation is that for data

sets of varying sizes, FSICI takes the least time for selecting

the features. It is also observed that FSICI extract highest

accuracies for the multi-class classification problems with

respect to the arrhythmia and dermatology data.

We first tested the performance of the various classifiers

on complete data sets, without employing any feature selec-

tion. The obtained classification accuracies are furnished in

table 2. Among the small-dimensional data sets only for

Parkinson’s, a negligible improvement was experienced

while working with the unpruned data set. For rest of the

small-dimensional data sets, all four classifiers performed

strictly better over the feature sets reduced by FSICI. For

the WBDC data set, SVM produced poor accuracies using

the features suggested by all feature selection methods,

whereas FSICI made SVM achieve 90% accuracy with un-

altered parameters. For medium-dimensional dermatology

data the classification accuracy reported by k-NN over the

original data was 88%, whereas using FSICI an accuracy of

only 80% was achieved. In contrast, Naive Bayes (89%) and

SVM (80%) perform well with the FSICI-pruned data (ac-

curacy received from the original data 87% and 57% respec-

tively). Among the large-dimensional data sets, for arrhythmia,

Naive Bayes and SVM brought slight improvement when exe-

cuted on the original data set. FSICI-pruned feature set perform

well in conjunction with k-NN and AdaBoost for the Arythmia

data set. For large-dimensional cancer data FSICI-pruned data

performed strictly well as supposed to the unpruned data sets, in

conjunction with all the classifiers. Finally, it can be concluded

that FSICI promises improved classification accuracies with

solid consistency.

3.2.1 Analysis of statistical significance of the results: The

McNemar test (Gillick and Cox 1989) on the cross-

validation results summarized in tables 3–5 identify no sig-

nificant superiority of any feature selection method on any of

the used data sets. The accuracies are too close to each other.

From tables 3–5 we see that FSICI sometime achieves the

highest accuracy and sometime the second highest accuracy.

The cross-validation accuracy of the classification models

were not sufficient to conclude about the superiority FSICI.

Therefore, we performed one-sided Wilcoxon signed-rank

test (Kanji 1999) to test if the proposed methodology is

superior. The test accounts for the ranked lists of the feature

selection methods based on the cross-validation accuracies

and examines the amount of deviation of the ranking from

Table 4. Comparison results of different feature selection algorithms for medium data sets

Data set

Evaluation criteria

Feature selection method

MICI SFS SFFS SBS SFBS BB Relief-F mRMR FSICI
WDBC NB Mean 91.60 86.95 90.21 89.90 72.17 89.75 87.93 92.07 90.66

SD ±0.719 ±2.19 ±1.36 ±0.803 ±2.64 ±0.414 ±1.08 ±1.73 ±1.76

k-NN Mean 90.45 86.82 87.68 87.52 77.32 87.81 89.28 90.64 92.50

SD ±2.12 ±2.35 ±2.43 ±2.45 ±2.6 ±2.44 ±1.81 ±1.81 ±1.55

D=30 AdaBoost Mean 90.57 89.77 90.33 88.73 72.91 89.28 89.65 92.32 92.17

d=17 SD ±1.80 ±1.27 ±2.42 ±2.91 ±4.80 ±2.01 ±1.66 ±1.29 ±1.90

Minpts=2 SVM Mean 62.77 62.44 62.91 62.56 62.36 62.66 71.50 63.49 90.23

Eps=0.375e+01 SD ±0.926 ±0.634 ±0.654 ±0.452 ±0.808 ±0.503 ±1.74 ±1.42 ±0.939

CPU TIME - 0.219 3.125 2.047 6.172 10.375 18.922 7.660 1.120 0.129

Dermatology NB Mean 76.02 80.99 87.33 80.84 74.72 69.63 88.60 86.73 88.79

SD ±5.00 ±3.48 ±3.76 ±5.16 ±5.21 ±4.15 ±3.53 ±2.96 ±2.2

k-NN Mean 75.25 82.30 86.09 81.93 72.39 65.45 87.64 86.89 79.66

SD ±3.64 ±2.66 ±3.34 ±2.35 ±3.84 ±3.09 ±2.71 ±3.12 ±2.77

D=34 AdaBoost Mean 46.43 45.12 46.46 45.68 41.02 37.42 45.96 44.53 48.51

d=17 SD ±3.10 ±2.22 ±3.76 ±6.15 ±10.3 ±8.02 ±4.69 ±5.02 ±2.44

Minpts=3 SVM Mean 72.45 53.88 49.29 54.57 39.25 65.93 84.44 79.25 80.56

Eps=5.72e-03 SD ±7.48 ±5.3 ±7.58 ±6.49 ±9.63 ±5.25 ±2.79 ±5.30 ±6.33

CPU TIME - 0.156 9.710 16.656 37.500 94.641 281.235 12.050 2.99 0.114
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the null hypothesis H0. For H0 we assumed that all feature

selection methods perform equally well. Table 6 reports the

p-values corresponding to each pair of feature selection

methods. The entry on i-th row and j-th column specifies

the p-value related to the testing of the superiority of the i-th

method over the j-th method. From tabular representation of

p-values it is clear that the performance of (FSICI) is signif-

icantly better than the other methods. The Wilcoxon signed-

ranks test is a non-parametric alternative to the paired t-test.

It ranks the differences in performances of two concerned

classifiers for each data set while ignoring the signs. After

that it compares the ranks for the positive and the negative

differences. Let di be the difference between the accuracy

scores of the two classifiers on ith out of N data sets. The

differences are ranked according to their absolute values;

average ranks are assigned in case of ties. Let R+ be the

Table 5. Comparison results of different feature selection algorithms for large data sets

Data set Evaluation criteria

Feature selection method

MICI SFS SFFS Relief-F mRMR FSICI

Arrhythmia NB Mean 52.604 49.877 52.998 50.885 53.58 53.661

SD ±4.73 ±4.19 ±5.23 ±5.26 ±3.66 ±2.35

k-NN Mean 49.435 46.683 52.776 46.020 52.482 51.499

SD ±4.23 ±4.98 ±4.13 ±5.52 ±3.72 ±2.97

D=259 AdaBoost Mean 50.000 53.342 54.496 55.160 54.422 54.496

d=98 SD ±5.64 ±4.44 ±4.48 ±2.48 ±3.41 ±2.14

Minpts=5 SVM Mean 54.054 53.096 53.784 54.275 54.103 53.243

Eps=30.97e-02 SD ±0.714 ±0.915 ±0.972 ±0.425 ±0.903 ±0.705

CPU TIME - 6.703 101.406 120.453 68.521 308.301 3.537

Colon cancer NB Mean 59.107 60.357 60.893 61.429 62.857 65.535

SD ±11.2 ±6.78 ±5.01 ±10.7 ±10.9 ±2.24

k-NN Mean 60.357 61.250 61.429 60.893 65.178 64.821

SD ±9.02 ±6.94 ±2.55 ±7.78 ±8.00 ±4.30

D=2000 AdaBoost Mean 55.893 55.000 54.821 58.214 59.107 61.250

d=471 SD ±8.03 ±11.4 ±9.11 ±9.53 ±10.90 ±3.67

Minpts=3 SVM Mean 56.607 61.786 62.500 56.250 60.714 63.928

Eps=17.027e-02 SD ±12.9 ±6.08 ±1.46 ±10.9 ±10.90 ±2.03

CPU TIME - 238.562 580.344 579.906 366.170 561.390 227.906

Lymphoma NB Mean 86.36 85.51 84.71 84.53 85.2 86.12

SD ±1.73 ±2.14 ±1.79 ±2.07 ±2.33 ±2.55

k-NN Mean 93.15 95.1 92.71 97.95 95.06 98.31

SD ±3.5 ±1.48 ±2.91 ±4.02 ±3.44 ±4.19

D=4026 AdaBoost Mean 95.4 96.27 89.15 92.2 93.17 96.82

d=189 SD ±5.12 ±5.16 ±4.03 ±3.49 ±4.12 ±1.81

Minpts=2 SVM Mean 95.2 94.7 95.16 94.92 92.99 95.11

Eps=72.8e-02 SD ±2.14 ±1.79 ±2.11 ±7.21 ±4.06 ±3.72

CPU TIME - 1071.81 1502.31 1611.48 1281.08 1579.11 891.43

Leukaemia NB Mean 89.41 − − − − 89.23

SD ±1.46 − − − − ±1.41

k-NN Mean 84.35 − − − − 86.92

SD 3.14 − − − − 1.28

D=7129 AdaBoost Mean 95.42 − − − − 98.34

d=233 SD 4.01 − − − − 3.81

Minpts=4 SVM Mean 98.12 − − − − 98.4

Eps=11.83e-01 SD ±1.75 − − − − ±1.89

CPU TIME - 1862.31 − − − − 1271.39
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sum of ranks for the data sets on which the second algorithm

outperformed the first one, and R- the sum of ranks for the

converse. Ranks of di=0 are split evenly among the sums; if

there is an odd number of them, one is ignored:

Rþ ¼�
X

di>0
rank dið Þ þ 0:5� rank dið Þ

R− ¼�
X

di<0
rank dið Þ þ 0:5� rank dið Þ

8

<

:

ð2Þ

Now let T be the smaller of the sums, i.e. T=min(R+,R-).

For a large number of data sets, the following statistic z is

approximately normally distributed:

z ¼�
T−0:25� N � N þ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

24
� N � N þ 1ð Þ � 2N þ 1ð Þ

� �

s ð3Þ

3.3 Selection of DBSCAN parameters

From the earlier discussion it is apparent that the working of

the DBSCAN is dependent on two parameters, namely Eps

and MinPts. Selection of Eps is important because selection

of larger Eps makes clusters grow larger when the MinPts is

not grown proportionately. A high value for MinPts makes

the density requirement stricter.

If density of the data points varies significantly from

region to region, it can miss natural clusters in sparse areas

while merging clusters in regions of higher density. Instead

of setting a high Eps one should set a little higher MinPts so

that the algorithm identifies truly dense cluster regions. In

the present feature selection method, choice of Eps must

commensurate with the range of the eigenvalues. Figure 1

shows the varying number of features in the largest cluster

and the number of clusters over different MinPts selections

for the WDBC data, which has a total of 30 features. User

can simply vary the Eps value while sticking to a standard

and strict MinPts, until a convincing number of features are

found in the largest cluster. Notice in figure 1 that, for

WBDC data, the MinPts selection merely had any impact

on number of features selected, with varying Eps.

As per our formulation of dissimilarity, choice of Eps

imposes a threshold for the larger eigenvalue, i.e. λ1. It is
important to observe if performance of the classifier is highly

sensitive to the change of Eps. To test this, a data set was

simulated containing 500 features, 300 instances and 3 clas-

ses. Each instance is sampled from a multivariate Gaussian

distribution N(μ, Σ), where μ=[E(f1),E(f2),…,E(f500)] de-

notes the vector of means of 500 features and Σ denotes

Table 6. Wilcoxon signed-rank test p-values

SFS SFFS Relief-F mRMR FSICI

MICI ↓0.30772 ↓0.28014 ↓0.13362 ↓0.18352 ↓0

SFS - ↓0.41794 ↓0.06576 ↓0.34212 ↓0

SFFS - - ↓0.242 ↓0.9162 ↓0.00022

Relief-F - - - ↑0.74896 ↓0.00072

mRMR - - - - ↓0.00068

Up arrow indicates that the comparison of rank sums is favorable for the method along the corresponding row. Down arrow indicates the
opposite.

Figure 1. Number features varying with Eps and MinPts parameter selections, for the WDBC data.
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the specified covariance matrix. R packages rockchalk and

MASS were used to accomplish this. Note that for different

classes some controlled variations are introduced in the

vector of means. The proposed method of feature selection

was used before classification while varying the Eps 0.5 to

10.5. Naive Bayes is classifier is used for this purpose. The

other parameter MinPts was kept fixed at 2. Also, every time

the classification performance is tracked for top 3 clusters of

features (figure 2). It was observed that performance of the

classifier changes fairly smoothly with respect to Eps and

settles down after a while. Also, it was found that use of

different clusters perform equally well.

4. Conclusion

In this article we proposed a fast, unsupervised feature selec-

tion technique called FSICI based on the principles of infor-

mation loss. The method is found performing significantly

better than many existing feature selection techniques when

applied on a wide range of biological data sets with diverse

dimensions. One of the important features of the method is its

low time complexity and manageable sensitivity to the param-

eters. Theoretically our work has some analogy with the meth-

od proposed by Mitra et al. (2002), but in practice we found

that the two eigenvectors derived from covariance matrix of a

pair of features have no consistent linear dependency.
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