Cloning and expression of antiviral/ribosome-inactivating protein from *Bougainvillea xbuttiana*

NANDLAL CHOUDHARY, HARISH C KAPOOR and MADAN L LODHA*,*§

Division of Biochemistry, Indian Agricultural Research Institute, New Delhi 110012, India

§Present address: Emeritus Scientist, Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India

*Corresponding author (Fax, +91-11-25846420; E-mail, mll_bio@yahoo.co.in)

A full-length cDNA encoding ribosome-inactivating/antiviral protein (RIP/AVP) from the leaves of *Bougainvillea xbuttiana* was isolated. The cDNA consisted of 1364 nucleotides with an open reading frame (ORF) of 960 nucleotides encoding a 35.49 kDa protein of 319 amino acids. The deduced amino acid sequence has a putative active domain conserved in RIPS/AVPs and shows a varying phylogenetic relationship to the RIPS from other plant species. The deduced protein has been designated BBAP1 (*Bougainvillea xbuttiana* antiviral protein1). The ORF was cloned into an expression vector and expressed in *E. coli* as a fusion protein of ~78 kDa. The cleaved and purified recombinant BBAP1 exhibited ribosome-inhibiting rRNA N-glycosidase activity, and imparted a high level of resistance against the tobacco mosaic virus (TMV).

[Choudhary N, Kapoor H C and Lodha M L 2008 Cloning and expression of antiviral/ribosome-inactivating protein from *Bougainvillea xbuttiana*; *J. Biosci.* 33 91–101]

1. Introduction

Many higher plant species belonging to various taxonomic families are known to produce endogenous, non-stress induced inhibitor proteins called antiviral proteins (AVPs). Many of these AVPs have ribosome-inhibiting rRNA N-glycosidase activity and are known as ribosome-inactivating proteins (RIPs). RIPs are subdivided into holo-RIPs and chimero-RIPs based on the structure of both proteins and their corresponding genes. Holo-RIPs consist exclusively of a single RNA N-glycosidase domain, and correspond to the classical type-1 RIPs, which are single-chain proteins of approximately 30 kDa. The chimero-RIPs correspond to the classical type-2 RIPs consisting of an N-glycosidase domain similar to type-1 RIPs and an unrelated C-terminal domain with carbohydrate-binding activity (VanDamme et al 2001). The gene encoding the jasmonate-induced protein of 60 kDa (JIP60), the only known type-3 RIP, consists of an N-terminal domain resembling type-1 RIPs, tandemly arrayed to an unrelated C-terminal domain with unknown function (VanDamme et al 2001).

The RIPs/AVPs have also been found to possess a number of enzymatic properties. To name a few, these include DNase activity on supercoiled DNA (Wang and Tumer 1999; Bhatia and Lodha 2005; Begam et al 2006; Choudhary et al 2007), RNase activity (Hudak et al 2000; Bhatia and Lodha 2005; Begam et al 2006; Roy et al 2006; Choudhary et al 2007) and depurination of capped mRNAs (Hudak et al 2002). Recently, some RIPs/AVPs have also been reported to show superoxide dismutase (SOD) activity.

Keyword. Antiviral protein; BBAP1; *Bougainvillea xbuttiana*; cDNA cloning and expression; N-glycosidase activity; ribosome-inactivating

Abbreviations used: AVP, antiviral protein; BBAP1, *Bougainvillea xbuttiana* antiviral protein1; BLAST, basic local alignment search tool; ORF, open reading frame; RIP, ribosome-inactivating protein; RLM-RACE, RNA ligase-mediated rapid amplified cDNA ends; RT-PCR, reverse transcription polymerase chain reaction; SOD, superoxide dismutase; TCS, trichosanthin; TMV, tobacco mosaic virus; UTR, untranslated region

http://www.ias.ac.in/jbiosci
(Sharma et al 2004), phospholipase (Hemly et al 1999) and antioxidant activity (Gholizadeh et al 2004), and induce cell death by apoptosis (Narayanan et al 2005). However, much remains to be known about the mechanisms through which these AVPs operate to inhibit virus infection in vivo without affecting the host ribosomes (Wang and Hudak 2003; Park et al 2004; Stirpe 2004).

Bougainvillea, a popular ornamental plant, is a member of the family Nyctaginaceae. Two highly basic AVPs designated as BAP-28 and BAP-24 have been purified from B. xbuttiana cv. Enid Lancaster leaves (Narwal et al 2001a). Similarly, AVP consisting of two polypeptide bands (33 kDa and 28 kDa) was purified from the leaves of B. xbuttiana cv. Mahara (Bhatia et al 2004). Like other AVPs, these were classified as RIPs owing to their N-glycosidase activity. Further, bougainvillea RIPs/AVPs have been suggested to be multifunctional proteins capable of inducing systemic resistance, and their virus inhibitory activity may be directly correlated to their enzymatic activities, such as N-glycosidase, RNase and DNase (Narwal et al 2001b; Bhatia and Lodha 2005), and antioxidant properties (Bhatia et al 2004). Barbieri et al (1993) reported that bougainvillea AVPs are the least toxic and a similar observation has also been made by Hartog et al (2002) in respect of a recombinant AVP, bouganin, encoded by a cDNA isolated from the leaves of Bougainvillea spectabilis. Development of transgenic lines with genes encoding RIPs/AVPs may be a promising strategy to develop virus-resistant crop plant species (Tumer et al 1999; Zoubenko et al 2000; Wang and Hudak 2003; Vandenbussche et al 2004). In the present study, we report the isolation and characterization of a cDNA encoding an AVP/RIP from B. xbuttiana leaves and its expression in Escherichia coli. The expressed recombinant protein, BBAP1, has already been shown to have RNase activity against Torula yeast RNA, DNase activity against pBSK+ supercoiled DNA, and antiviral activity against sunnhemp rosette virus which infects Cyamopsis tetragonoloba (Choudhary et al 2007).

2. Materials and methods

2.1 Plant materials, viral and bacterial strains

Fresh, tender leaves of B. xbuttiana cv. Mahara (non-host plant) were collected from the Bougainvillea garden of the Division of Floriculture and Landscaping, IARI, New Delhi. Seeds of Nicotiana glutinosa (host plant) were obtained from the Central Tobacco Research Institute, Rajamundry and grown in a greenhouse at the National Phytootron Facility, IARI, New Delhi. Tobacco mosaic virus (TMV) inoculum was obtained from the Advanced Centre for Plant Virology, IARI, New Delhi. Tobacco mosaic virus (TMV) inoculum was obtained from the Advanced Centre for Plant Virology, IARI, New Delhi. E. coli strains DH5α and TB1 were used for cloning and expression of the cDNA, respectively.

2.2 Isolation of cDNA encoding BBAP1

Total RNA was isolated from fresh, tender bougainvillea leaves (0.1 g) using TRI reagent extraction buffer (Cat # TR-118, MRC, USA). The purity of the isolated RNA was checked spectrophotometrically. The isolated RNA was dissolved in nuclease-free water and stored at −80°C until further use for cDNA synthesis. First-strand cDNA was synthesized as per the manufacturer’s protocol (Sensiscript RT Kit, Cat # 205211, Qiagen). cDNA sequence data of the conserved region of RIPs/AVPs available in the GenBank were used to design gene-specific primers for PCR amplification of the cDNA. The programme used in a thermocycler was 4 min at 94°C, 35 cycles each of 1 min at 94°C, 1 min at 58°C and 1 min at 72°C. Subsequently,
the PCR products were analysed on 1% agarose Tris/borate/EDTA gels and cloned into the pDrive vector (Cat # 231122, Qiagen). E. coli DH5α was transformed with the clone and the positive clone was sequenced at South Campus, University of Delhi. The sequence similarity analysis of the 261 bp cDNA fragment thus obtained was done by performing a basic local alignment search tool (BLAST) search at NCBI (www.ncbi.nlm.nih.gov; Altschul et al 1997).

For isolation of the full-length cDNA encoding BBAP1, seven primers were used (table 1, S. nos.3–9). Using the RNA ligase-mediated rapid amplified cDNA ends (RLM-RACE) technique (First Choice® RLM-RACE kit, Ambion), the 5′ untranslated region (UTR) and 3′ UTR missing regions of the obtained fragment were determined as per the manufacturer’s protocols. By using primers 3, 4 and 5 (table 1), the 5′ missing region was amplified, and primers 6 and 7 (table 1) were used to amplify the 3′ missing region. The full-length cDNA was amplified by a one-step reverse transcription polymerase chain reaction (RT-PCR kit, Cat # 210210, Qiagen) using leaf mRNA as the template, and forward and reverse primers (table 1, S. nos. 8 and 9), specific to the 5′ UTR and 3′ UTR ends, respectively. mRNA was isolated from the total RNA as per the manufacturer’s protocol provided along with the Oligotex mRNA mini kit (Cat # 70022, Qiagen). All the PCR products were analysed, cloned and sequenced as mentioned above. Phylogenetic analysis of the cloned cDNA sequences was performed using the Mega 3.0 software (http://www.megasoftware.net).

2.3 In vitro expression of cDNA and western blotting

To amplify only the open reading frame (ORF), PCR was carried out with specific primers of the 5′ and 3′ ends of the coding region. To do directional cloning of the PCR product in the pMAL-c2X expression vector, EcoRI and PstI restriction sites were incorporated at the 5′ ends of the forward and reverse primers, respectively. The PCR reaction mixture (25 µl) contained 0.5 µg full-length cDNA, 2.5 µl 10x Pfu buffer, 10 mM dNTPs mix, 10 mM MgSO₄, 100 pmol each of forward and reverse primers (table 1, primers 10 and 11), and 1.25 U Pfu DNA polymerase. The thermocycler programme used was 4 min at 94°C, 35 cycles each of 1 min at 94°C, 1 min at 72°C, and 1 min at 72°C. The amplified products were digested with EcoRI and PstI restriction enzymes, cloned into the pMAL-c2X vector and used for transformation of TB1 cells for protein expression using the pMALTM-Protein Fusion and Purification kit, as per the manufacturer’s protocol (New England BioLabs, UK Cat # E8000S). Western blotting of the expressed fusion protein was performed as described by O’Donnell et al (1982), and Rybicki and Von wechmar (1982) using a nitrocellulose membrane and alkaline peroxidase-conjugated antibodies (Bangalore Genei Cat #105498).

2.4 Purification of recombinant BBAP1 protein and N-glycosidase assay

The fusion protein was purified from the crude extract by affinity column chromatography as per the manufacturer’s instructions (New England BioLabs Cat # E8000S). It was done on a 10 × 2.5 cm column packed with amylose resin specific for maltose-binding protein (MBP). The eluted protein was checked for its purity on 12% SDS-PAGE, and cleaved with factor Xa. The cleaved protein sample was dialysed against 20 mM sodium acetate pH 5.2 containing 0.01% sodium azide, and loaded on to a Sephadex G-100 column pre-equilibrated with column buffer (20 mM sodium acetate pH 5.2, 0.01% sodium azide) with a flow rate of 40 ml h⁻¹. The protein was eluted and 2 ml fractions were collected using an LKB Fraction Collector system. Protein homogeneity was checked on 12% SDS-PAGE.

Ribosomes were isolated from Nicotiana tabacum leaves according to the method of Tumer et al (1997). Ribosomes (10 µg) were treated with 2 µg of purified expressed BBAP1 to check the N-glycosidase activity (Girbes et al 1993). In the positive control, saponin RIP was added in place of the BBAP1. Ribosomal RNA was extracted by the standard method (Sambrook and Russel 2001) and treated with freshly prepared 10 µl of 2 M aniline/acetate (pH 4.5). These tubes were incubated on ice for 10 min in the dark. The reaction was stopped by dilution with 200 µl of water. Aniline was removed by two extractions with ether. RNA was again recovered by ethanol precipitation and resuspended in 15 µl of loading buffer. It was then incubated at 90°C for 30 s and immediately chilled on ice. Samples were then electrophoresed on 5% polyacrylamide gel and stained with ethidium bromide (0.5 µg ml⁻¹ in 1× TBE) for 45 min. The presence of a released fragment on the gel was recorded as rRNA N-glycosidase activity.

2.5 Antiviral bioassay of BBAP1

The antiviral activity of purified recombinant BBAP1 was tested by the local lesion assay using Nicotiana glutinosa plants and TMV. Test plants with the same height and vigour were selected and, for each treatment, five plants with 3–4 leaves of equal size were used. BBAP1 was applied on the test plant leaves at the rate of 50 µg leaf⁻¹. After 1 h, the protein-treated leaves were washed with distilled water and gently blotted dry.

The leaves were then rubbed very lightly with 600 mesh carborundum powder and inoculated gently and uniformly with the virus inoculum. For the control, test plant leaves were initially treated only with buffer and then with virus inoculum. Ten minutes after inoculation, the leaves were washed with distilled water. Plants were observed for the development of lesions for 3–4 days. The inhibitory
activity of the protein was calculated in terms of percentage inhibition using the following formula: % inhibition = (C–T) × 100/C; where C = average number of lesions in control plants and T = average number of lesions in treated plants.

3. Results and discussion

3.1 Isolation and sequence analysis of the cDNA fragment encoding BBAP1

Total RNA was isolated from Bougainvillea xbuttiana leaves and its reverse transcript (RT). cDNA was used in the PCR reaction as a template. Using gene-specific primers, a ~261 bp cDNA fragment was obtained. However, the isolated sequence lacked the 5′ and 3′ regions, which were amplified using the RLM-RACE technique. Both the 5′ and 3′ missing regions were amplified using gene-specific reverse and forward primers designed on the basis of the nucleotide sequence of the 5′ and 3′ ends of the cDNA fragment, respectively.

A full-length cDNA encoding bougainvillea AVP was obtained using forward and reverse primers specific to the 5′ and 3′ ends, and bougainvillea leaf mRNA as template. The full-length cDNA sequence was found to be 1364 bp long, and has been submitted to the NCBI GenBank (Accession No. DQ013264), wherein the deduced AVP has been designated as BBAP1 (Bougainvillea xbuttiana antiviral protein1).

3.2 In silico analysis of isolated gene/cDNA

The nucleotide sequence of the full-length cDNA and deduced amino acids are shown in figure 1. The cDNA has a translation initiation codon (ATG) after the 120th position, downstream of the first base, and is terminated by the stop codon (TAA) located after the 1077th nucleotide. Two polyadenylation signals (AATAA) were located after positions 1161 and 1252, respectively. In addition, a poly (A) tail of 12 adenine nucleotides was also detected. The 5′ and 3′ UTRs have been found to be 120 and 284 bp long, respectively. The nucleotide composition of the cDNA as analysed by the BioEdit software was found to be: 473 adenine (A), 233 cytosine (C), 257 guanine (G) and 401 thymine (T). The total G + C and A + T content was 35.92% and 64.08%, respectively. Thus, based on the nucleotide composition, the isolated cDNA was found to be AT rich.

A BLAST N search did not show any significant homology of the isolated cDNA with other known sequences of RIPs/AVPs, except 88.83% and 88.16% homology with cDNAs encoding the AVP of leaves (bouganin) and roots (Ap1) of Bougainvillea spectabilis, respectively. However, Clustal W alignment showed a strong homology with the nucleotide sequence from 715 to 753 of cDNAs of nine different RIPs/AVPs (results not shown). The full-length cDNA was translated (www.expasy.com) and it was found that the ORF of 960 bp encodes 319 amino acid residues. The theoretical amino acid composition using the software BioEdit revealed that the protein was rich in leucine (10%), followed by valine (9.4%) and lysine (9.1%). The molecular weight of the protein was predicted to be 35.49 kDa. The BLAST P ORF-encoded amino acid sequence of BBAP1 showed an identity range of 30–57% with different RIPs/AVPs, being maximum with both bouganin and Ap1. The ClustalW alignment as well as conserved domain BLAST showed a strong homology in the conserved region (IQIVSAVEARFKYI) (figure 2), which is incidentally the active site of the protein.

The phylogenetic relationship of BBAP1 with ten other RIPs/AVPs constructed on the basis of ClustalW alignment is shown in figure 3. The BBAP1, bouganin and Ap1 proteins could be grouped into one cluster with 98% bootstrap values. This may be due to the fact that all these AVPs are from two species of bougainvillea only. The BBAP1 cluster was also related to another cluster of four AVPs (M. jalapa, MAP, ME1 and amaranthin). This may be due to the fact that BBAP1 and other AVPs except amaranthin belong to the same family Nyctaginaceae. The BBAP1 cluster showed a distant relationship with PAP and PAP1; and was unrelated to AAP1 and CCP.

3.3 Characterization of a putative signal sequence

The homology studies with a signal sequence at the N-terminal of bouganin (results not shown) suggested that BBAP1 might have a signal peptide sequence of 36 amino acids (3.89 kDa) as against 26 amino acids in case of bouganin (Hartog et al 2002). Several other RIPs/AVPs have also been reported to have a signal peptide at the N-terminus (Lin et al 1991; Chow et al 1999; Cho et al 2000; Kwon et al 2000; Vepachedu et al 2003; Begam et al 2006).

3.4 Cloning and expression of the gene in E. coli

E. coli TB1 cells containing cDNA encoding for AVP from the leaves of B. xbuttiana, cloned in an expression vector (pMAL-c2X), were grown in LB medium containing 0.3 mM IPTG to induce protein expression.

When the optical density of the culture was measured at 600 nm every 45 min, the bacterial cells with non-recombinant (control) as well as recombinant vectors showed normal growth even after IPTG induction. A linear growth was observed up to 135 min, and thereafter no further growth was observed (results not shown). This pattern of growth of E. coli TB1 cells indirectly indicates that the translational product BBAP1 of the cloned ORF has no toxic effect on the
Figure 1. Nucleotides (pink) and deduced amino acids (black) sequences of full-length cDNA encoding RIP/AVP of Bougainvillea xbutiana (GenBank accession no. DQ013264). In lower case, the 5' UTR (blue) corresponds to nucleotide positions from 1 to 120 and the 3' UTR (green) sequence from positions 1081 to 1364. The coding region nucleotide sequence contains positions 121–1080. Two polyadenylation signals (AATAA) are present after the 1161th and 1252th positions. The conserved region sequence is represented by blue (nucleotides) and light green (amino acids).
Figure 2. ClustalW alignment of the deduced amino acid sequence of BBAP1 with other RIPs/AVPs. GenBank accession numbers of RIPs used for analysis are as follows: BBAP1 (DQ013264); bouganin (AF445416); Ap1 (AY437531); MAP (D10569, D10227); ME1 (AY148091); PAP (AY752976); PAPI (AY071928); amaranthin (U85255); AAP1 (AY354205) and CCP-27 (AJ784781). Identical residues are highlighted in boxes.

J. Biosci. 33(1), March 2008
bacterial cells. Similar results were also obtained in the case of expression of recombinant AVP/RIP from pre-flowering stage Celosia cristata (Gholizadeh et al. 2005) and ME1 RIP from Mirabilis expansa (Vepachedu et al. 2005).

3.5 Western blotting of expressed fusion protein

Total protein from uninduced and induced E. coli TB1 cells containing recombinant plasmid pMAL-c2X and from control cells, i.e. TB1 cells with non-recombinant plasmid (with and without IPTG), was extracted and analysed on 12% SDS-PAGE (results not shown). A band corresponding to ~78 kDa was found only in the induced cells containing recombinant plasmid. This band consisted of maltose-binding protein (MBP) fused to the expressed AVP BBAP1. To confirm the presence of a fusion protein, the protein extracted from induced recombinant cells was subjected to western blot analysis. As shown in figure 4, a prominent protein band corresponding to ~78 kDa was detected, thereby confirming that the expressed protein is a fusion product (lanes 1 and 2). In addition, a faint protein band of MBP (~42.5 kDa) was detected, which might have been released due to partial degradation of the fusion protein.

3.6 Purification of expressed BBAP1

As shown in figure 5, the affinity chromatography-purified protein showed a single band of ~78 kDa (lane 1), confirming that it was a fusion protein. The fusion protein cleaved with factor Xa showed two bands (lane 2), indicating the presence of MBP (~42.5 kDa) and recombinant BBAP1 (~35 kDa). Further, on gel filtration using Sephadex G-100, a single band corresponding to ~35 kDa (lane 3) was obtained. Theoretically, the ORF-deduced protein was also found to be 35.49 kDa, confirming the purity of the expressed recombinant BBAP1. Earlier in our laboratory, the purified native BBAP1 was found to be of ~33 kDa (Bhatia et al. 2004). Thus, the expressed BBAP1 (~35 kDa) is larger than the native protein. As discussed earlier (section 3.3), this might be due to the presence of a signal peptide. Similar results have been reported for MAP (Kataoka et al. 1991), PAP II (Poyet et al. 1994), bougainin (Hartog et al. 2002) and Celosia cristata AVP, CCP-27 (Begam et al. 2006).

3.7 N-glycosidase activity

Most of the AVPs are known to possess ribosome-inhibiting N-glycosidase activity and are therefore known as ribosome-inactivating proteins (RIPs). As shown in figure 6, tobacco ribosomes treated with recombinant BBAP1 released a fragment of rRNA, which was observed in the presence of acidic aniline treatment (lane 1). A positive control, in which saporin RIP was used, also showed such a released fragment (lane 4). The released fragment is diagnostic of an RIP. However, in the case of negative controls (without aniline treatment), no such released fragment was observed when rRNA was treated with BBAP1 or saporin (lanes 2 and 3). Due to N-glycosidase activity, the position of the 25S rRNA also shifted and its mobility became slightly faster (figure 6, lanes 1, 4) than that of the respective controls (lanes 2, 3). These results corroborate well with most of the other results reported for RIPs/AVPs from different plant species (Honjo et al. 2002; Park et al. 2004; Begam et al. 2006). The faint band observed in case of the positive control (lane 4) may be due to the low N-glycosidase activity of saporin.

3.8 Antiviral activity of recombinant BBAP1

The purified recombinant BBAP1 was tested for its antiviral activity using local lesion assay wherein tobacco (Nicotiana glutinosa) plants were infected with TMV (figure 7). The average number of lesions per leaf in case of BBAP1-treated plants (50 µg) was only 2 as against 49 lesions in control plants; thus, ~94% inhibition was exhibited. A similar level of inhibition was observed when BBAP1 was tested against sunnhemp rosette virus (Choudhary et al. 2007). These results are in conformity with our earlier results obtained with native bougainvillea AVPs (Narwal et al. 2001a; Bhatia et al. 2004).

In addition to having broad-spectrum antiviral activity, a few RIPs have been shown to have antifungal and antibacterial activity, including some plant pathogenic microorganisms. Thus, such RIPs have a potential to be used as biopesticides. Two root-specific RIPs of the Andean crop Mirabilis expansa have been found to be active against a number of plant pathogens, including root-rot fungi and bacteria (Vivanco et al. 1999; Park et al. 2002). More recently, an RIP isolated from tobacco leaves has been shown to inhibit fungal as well as bacterial growth (Sharma et al. 2004). Previous studies also have shown that expression of PAP mutants in transgenic tobacco plants leads to resistance against a broad spectrum of viruses and fungal pathogens (Lodge et al. 1993; Zoubenko et al. 1997). Guo et al. (1999) transformed tomato cultivars with cDNA encoding trichosanthin (TCS), and the transgenic plants showed resistance against tomato mosaic virus and cucumber mosaic virus.

The present study and earlier results (Choudhary et al. 2007) suggest that BBAP1 is a multifunctional protein having antiviral activity. One way of utilizing the cloned gene encoding BBAP1 is to develop transgenic crop plants with resistance against plant pathogens, including viruses. Alternatively, the gene can be expressed in a prokaryotic system and the expressed recombinant AVP could be used as

J. Biosci. 33(1), March 2008
a biopesticide for spraying on the leaves of crops to prevent or control infection due to pathogens. However, further studies on BBAP1 are required for a better understanding of the mechanism of its antiviral/antimicrobial action, which should facilitate the development of biopesticides and virus-resistant plants.

Figure 3. Phylogenetic relationship of BBAP1 to different RIPs/AVPs. The amino acid sequences of BBAP1 (DQ013264); bouganin (AF445416); Ap1 (AY437531); PAP (AY572976); PAP1 (AY071928); M. jalapa (D10227); MAP (D10569); ME1 (AY148091); amaranthin, (U85255); AAP1 (AY354205) and CCP-27 (AJ784781) were used. Values given on the nodes are bootstrap values of replications.

Figure 4. Western blot analysis of fusion protein (lanes 1 and 2) using antimaltose-binding protein as the primary antibody and rabbit antiglutathione-S-transferase conjugated with horseradish peroxidase as the universal conjugate. *E. coli* expressed BBAP1 protein (20 µg) fractionated on 12% SDS-PAGE and electroblotted onto a nitrocellulose membrane. One prominent band of ~78 kDa for the fusion protein and another faint band of ~42.5 kDa for maltose-binding protein (MBP) were detected. MBP might have been released due to partial degradation of the fusion protein. Non-specific signal may be due to further degradation of fusion protein.

Figure 5. SDS-PAGE analysis of the purified expressed protein BBAP1. Lane 1: affinity chromatography purified fusion protein; lane 2: fusion protein on cleavage with factor Xa; lane 3: purified protein after gel filtration; and lane M: molecular weight marker.

Figure 6. N-glycosidase activity of expressed BBAP1. Recombinant BBAP1 (2 µg) tested for its N-glycosidase activity on rRNA of ribosomes (10 µg) isolated from tobacco leaves. Lane 1: rRNA treated with BBAP1 (+); lane 2: rRNA treated with BBAP1 (–); lane 3: rRNA treated with saporin RIP (–); and lane 4: rRNA treated with saporin RIP (+). ‘+’ and ‘–’ signs indicate, respectively, with and without aniline treatment of rRNA. Saporin RIP (+) served as the positive control, while treatment without aniline was the negative control.
Acknowledgements

NC is thankful to the University Grants Commission, New Delhi for awarding a research fellowship for this study. We are also thankful to Dr K V Prabhu, National Phytotron Facility, Indian Agricultural Research Institute, New Delhi for providing facilities to raise *Nicotiana* spp plants, and to Dr T R Sharma, NRCPB, IARI for useful suggestions.

References

Bhatia S and Lodha M L 2005 RNase and DNase activities of antiviral proteins from leaves of *Bougainvillea xbuttiana*; *Indian J. Biochem. Biophys.* 42 152–155

Choudhary N L, Yadav O P and Lodha M L 2007 Ribonuclease, deoxyribonuclease, and antiviral activity of *Escherichia coli*-expressed *Bougainvillea xbuttiana* antiviral protein; *Biochemistry (Moscow)* (in press) (Published online on 16 Dec 2007 as MS BM07 – 272)

Gholizadeh A, Kohnehrouz B B, Santha I M, Lodha M L and Kapoor H C 2005 Cloning and expression of small cDNA fragment encoding strong antiviral peptide from *Celosia cristata* in *Escherichia coli*; *Biochemistry (Moscow)* 70 1005–1010

Figure 7. Antiviral bioassay of purified recombinant protein BBAP1 by a local lesion test using tobacco (*Nicotiana glutinosa*) as the test plant and tobacco mosaic virus (TMV) for infection. (A) Control: Plant treated with buffer only and then infected with the virus. (B) Plant treated with recombinant protein BBAP1 (50 µg leaf⁻¹) dissolved in the buffer, and subsequently infected with the virus as explained in Materials and methods.
coding for bougainin-A type-I ribosome inactivating protein from Bougainvillea spectabilis Willd; Eur. J. Biochem. 269 1772–1779

Honjo E, Danhong D, Hiroyuki M and Keiichi W 2002 Genomic clones encoding two isoforms of pokeweed antiviral protein in seeds (PAP-S1 and S2) and the N-glycosidase activities of their recombinant proteins on ribosomes and DNA in comparison with other isoforms; J. Biochem. 131 225–231

Hudak K A, Bauman J D and Tumer N E 2002 Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA downstream of the cap; RNA 8 1148–1159

Kataoka J, Noriyuki H, Masahiri F and Masashi M 1991 DNA sequence of mirabilis antiviral protein (MAP), a ribosome-inactivating protein with an antiviral property from Mirabilis jalapa L. and its expression in E. coli; J. Biol. Chem. 266 8426–8430

Narwal S, Balasubrahmanyam A, Lodha M L and Kapoor H C 2001a Purification and properties of antiviral proteins from the leaves of Bougainvillea xbuttiana; Indian J. Biochem. Biophys. 38 342–347

Park S W, Stevens NM and Vivanco JM 2002 Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity; Planta 216 227–234

Stirpe F 2004 Ribosome-inactivating proteins; Toxicon 44 371–383

Tumer N E, Hwang D J and Bonness M 1997 C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes; Proc. Natl. Acad. Sci. USA 94 3866–3871

Vepachedu R, Bais H P and Vivanco J M 2003 Molecular characterization and post translational regulation of ME 1, a type-1 ribosome-inactivating protein from Mirabilis expansa; Plant Physiol. 217 498–506

Vepachedu R, Park S W, Sharma N and Vivanco J M 2005 Bacterial expression and enzymatic activity analysis of ME 1, a ribosome-inactivating protein from Mirabilis expansa; Protein Expr. Purif. 40 142–151

Wang P and Tumer N E 1999 Pokeweed antiviral protein cleaves double stranded supercoiled DNA using the same active site required to depurinate rRNA; Nucl. Acids Res. 27 1900–1905
Ribosome-inactivating protein from Bougainvillea xbuttiana

Zoubenko O, Hudak K and Tumer N E 2000 A nontoxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid independent pathway; Plant Mol. Biol. 44 219–229

MS received 22 October 2007; accepted 9 January 2008
ePublication: 2 February 2008

Corresponding editor: K Muniyappa