1. Introduction

Bleeding tendency is a well-known complication associated with cirrhosis. This disorder of haemostasis has been related to a complex coagulation defect due to impaired platelet function (Kelly and Summerfield 1987). Platelets promote haemostasis by adhering to the sites of vascular injury, releasing compounds from their granules, aggregating together to form a haemostatic platelet plug and providing a procoagulant surface on their phospholipid membrane to arrest bleeding (Bennett and Kolodziej 1992).

Nitric oxide (NO), a powerful endothelium-derived vasodilator, is a potent inhibitor of platelet function, and has a relaxant effect on vascular smooth muscle (Moncada et al 1991; Radomski and Moncada 1993). Endogenous NO is generated by a family of three distinct

Keywords. Cirrhosis; cytosolic calcium; nitric oxide; nitric oxide synthase; platelet aggregation

Abbreviations used: ADP, adenosine diphosphate; ATPase, adenosine triphosphatase; BT, bleeding time; cGMP, cyclic guanosine monophosphate; cNOS constitutive NOS; DIC, diphenylene iodium chloride; eNOS, endothelial NO synthase; iNOS, inducible NOS; NO, nitric oxide; NOS, NO synthase; nNOS, neuronal NO synthase; PRP, platelet-rich plasma; RBC, red blood cell
calmodulin-dependent NO synthase (NOS) enzymes; endothelial (eNOS) and neuronal (nNOS) isoforms are constitutive (cNOSs), whereas the other one is inducible (iNOS) (Fleming and Busse 2004) and is not generally expressed in unstimulated cells. NOS catalyses the formation of NO and L-citrulline from L-arginine in the presence of oxygen and NADPH (Stuehr 1999). NO plays a biphasic role in platelet activation; a stimulatory role at low concentration and an inhibitory role at high concentration (Marjanovic et al 2005). NO synthesized by NOS in both platelets and vascular endothelium inhibits platelet aggregation and adhesion, exerting its action through activation of soluble guanylyl cyclase and elevation of cyclic guanosine monophosphate (cGMP) (Radomski and Moncada 1993); these, in turn, lead to decreased availability of calcium (Ca^{2+}) in the cells (Geiger et al 1992). Elevated cytoplasmic “free Ca^{2+}” is a major component of signal transduction following receptor stimulation in platelets (Davies et al 1989). Agonists activate phospholipase C, which leads to rapid depletion of inositol 1,4,5-triphosphate (IP_{3})-sensitive Ca^{2+} stores and inhibition of the cation influx (Rossier et al 1991). This fact has been supported by the finding that calcium adenosine triphosphatase (ATPase) inhibitors effect depletion of Ca^{2+} stores in platelets (Brune and Ullrich 1991).

Platelet-derived NO not only modulates platelet activation to strong and weak agonists but, more importantly, markedly inhibits platelet recruitment to the growing platelet thrombus (Freedman et al 1997). Prolonged bleeding time and platelet abnormality were reported to be associated with NO production in experimental cirrhosis (Albornoz et al 1999).

The present study was carried out to evaluate whether NO, NOS activity and cytosolic Ca^{2+} level play any role in the platelet activation defect in liver cirrhosis. Hence, we monitored the changes in the levels of NO, NOS and cytosolic Ca^{2+} during collagen-induced in vitro aggregation of platelets in patients with cirrhosis. The level of aggregation in the presence of an eNOS inhibitor was also assessed to confirm the inhibitory effect of eNOS on platelet function. The data presented here demonstrate the role of cytosolic Ca^{2+} and NO in the functional defect of platelets in liver cirrhosis.

2. Methods

Forty patients registered in the Department of Surgical Gastroenterology and Proctology, Stanley Medical College and Hospital, Chennai and Department of Digestive Health Diseases, Government Peripheral Hospital, Gandhi Nagar, Chennai were recruited in this study. The patients with cirrhosis had their diagnosis confirmed by ultrasound and Doppler use-ultrasound. Variceal bleeding was confirmed by endoscopy. Age- and sex-matched healthy volunteers (n = 40) with normal liver functions confirmed by liver biochemistry were used as control subjects. The age range of the patients was 35–50 years (mean 44.5 ± 5.26 years), and that of normal control subjects 35–55 years (mean 45.5 ± 5.64 years). Case histories collected from the patients furnished the details regarding their habits and symptoms including the status and frequency of bleeding. The clinical characteristics of patients with cirrhosis are shown in table 1. The patients were considered as grade A, grade B and grade C according to the Child–Pugh score, which is based on the levels of serum bilirubin, albumin, prothrombin time, neurological complications and the presence of ascites.

The study protocol was approved by the ethics committee and blood samples were collected with the consent of each patient.

2.1 Determination of bleeding time

Bleeding time, expressed in seconds, was measured from the moment of incision until the bleeding stopped (Mielke et al 1969).

Table 1. Clinical characteristics of patients with cirrhosis and normal subjects included in the study

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Patients with cirrhosis</th>
<th>Normal subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Male/female ratio</td>
<td>20/20</td>
<td>25/15</td>
</tr>
<tr>
<td>Age in years (range)</td>
<td>35–50</td>
<td>35–55</td>
</tr>
<tr>
<td>Aetiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcoholic</td>
<td>33</td>
<td>-</td>
</tr>
<tr>
<td>Metabolic</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Grade (according to Child–Pugh class)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>Platelet count</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 × 10^5 cells/µl</td>
<td>32</td>
<td>-</td>
</tr>
<tr>
<td>>1 × 10^5 cells/µl</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>>2.5 × 10^5 cells/µl</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td></td>
<td></td>
</tr>
<tr>
<td><4 s</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>4–6 s</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>>6 s</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>Bleeding time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60–80 s</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>80–90 s</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>100–105 s</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>120–125 s</td>
<td>32</td>
<td>-</td>
</tr>
</tbody>
</table>

J. Biosci. 33(1), March 2008
2.2 Isolation of platelets

Platelets were isolated from the blood samples of experimental subjects. Briefly, 10 ml of fasting blood was collected by venous arm puncture and mixed with 1.6 ml of acid–citrate–dextrose solution. The blood was centrifuged at 275 g for 10 min at room temperature to obtain platelet-rich plasma (PRP). The PRP was then centrifuged at 400 g for 5 min to remove any contaminating red blood cell (RBC). Then the PRP was centrifuged at 1000 g to pellet out the platelets and was subjected to washing in platelet washing buffer I (0.12 M NaCl, 0.0129 M trisodium citrate and 0.001 M EDTA, pH 7.4). The washing procedure was continued until the pellet was erythrocyte free and its purity confirmed. The platelet pellet was suspended in platelet storage buffer containing 0.109 M NaCl, 4.3 mM K2HPO4, 16 mM Na2HPO4, 8.3 mM NaH2PO4 and 5.5 mM glucose, pH 7.5 and stored at 4°C (Aster and Jandl 1964). All the estimations were performed concurrently within 5 h of sample collection under sterile conditions.

2.3 Estimation of nitric oxide in terms of nitrite

NO in unstimulated and stimulated platelets was measured in terms of total nitrite (Fiddler 1977). The level of NO was expressed as nM nitrite/mg PRP protein in unstimulated platelets and nM nitrite/10⁸ platelets in stimulated platelets.

2.4 Assay of total NOS activity

NOS activity was assayed by using an NO synthase assay kit (FCANOS-1) purchased from Sigma-Aldrich Company. The fluorimetric cell-associated NOS detection system measures the intracellular production of NO in platelets by a non-radiometric method. 4,5-diaminofluorescein diacetate penetrates the cells rapidly where it is hydrolysed by intracellular esterase to diaminofluorescein-2 which, in turn, reacts with NOS to form fluorescent triazolofluorescein. This is quantified by a spectrofluorometer using an excitation filter of 492 nm and an emission filter of 515 nm (Kojima et al 1998).

2.5 Determination of platelet cytosolic Ca²⁺

Platelet cytosolic Ca²⁺ was measured with the fluorescent indicator Fura-2 (Astarie-Dequeker et al 1992). Platelets were loaded with 2 μM Fura-2 AM for 40 min at 37°C in the presence of autologous plasma, washed by centrifugation at 270 g for 15 min at 20°C and resuspended at a concentration of 1 × 10⁸ cells/ml in a medium containing 145 mM NaCl, 5 mM KCl, 0.5 mM MgCl₂, 5 mM glucose and 10 mM HEPES, pH 7.4 at 37°C, and 30 nM free Ca²⁺ concentration adjusted with the required Ca²⁺–EGTA buffer. Fluorescence intensities were measured at 37°C using an ELICO SL174 spectrofluorometer with the excitation wavelength alternating between 340 and 380 nm, and emission wavelength at 510 nm.

2.6 Measurement of platelet aggregation

Platelet aggregation was determined based on the measurement of the change in turbidity at 620 nm (Bellavite et al 1994). Briefly, the wells were supplemented with 100 μl of the agonist 4 μM ADP/2 μM collagen in buffer A (145 mM NaCl, 5 mM KCl, 10 mM HEPES, 0.5 mM Na₂HPO₄, 6 mM glucose, 0.2% human serum albumin in 1 litre distilled water, pH 7.4) supplemented with 3 mM CaCl₂ and 3 mM MgSO₄. The platelet count in the PRP was adjusted to 2.5 × 10⁸ cells/µl with autologous platelet-poor plasma (PPP). After the addition of an aliquot of the platelet suspension pre-warmed at 37°C, the decrease in absorbance at 620 nm was followed over a period of 9 min in an ELISA strip reader.

Aliquots were obtained at different time intervals to monitor the changes in the levels of NO, NOS and cytosolic Ca²⁺. Aggregation and cytosolic calcium were also measured in the presence of the eNOS inhibitor diphenylene iodinium chloride (DIC) (0–40 μM).

2.7 Statistical analysis

Data were analysed using a commercially available statistical software package (SPSS for Windows v. 7.5). Student t test was performed to find out the significance of variations between the normal subjects and patients with cirrhosis, and Spearman correlation test was conducted for correlation analyses. Results were presented as mean ± SD. A P value <0.05 was considered statistically significant.

3. Results

3.1 Concentrations of NO, NOS and Ca²⁺, and platelet aggregation

The level of aggregation was significantly low in platelets of patients with cirrhosis. The percentage of collagen-induced aggregation was significantly lower than that of adenosine diphosphate (ADP) (P<0.01) in patients with cirrhosis. The basal PRP level of NO was significantly elevated (P<0.01) in platelets of patients with cirrhosis. NOS activity was also found to be higher (P<0.01) in unstimulated platelets. Platelet cytosolic Ca²⁺ measured by Fura-2 uptake was significantly
low ($P<0.01$) in patients with cirrhosis compared with that in control subjects. The bleeding time was prolonged in patients with cirrhosis ($P<0.001$) (table 2).

3.2 Level of platelet aggregation

Figure 1 presents the time course of platelet aggregation in normal subjects and in patients with cirrhosis. There was a significant time-dependent increase in the percentage aggregation of normal platelets. However, no significant increase in aggregation was exhibited by platelets of patients with cirrhosis.

3.3 Effect of NO on platelet aggregation

Figure 2 represents the time-dependent changes in NO level during the course of platelet aggregation. Platelet
Figure 3. Time course of calcium release during aggregation of platelets.

Aggregation was induced in platelets as described in figure 1. Aliquots containing 1×10^4 platelets from normal subjects and patients with cirrhosis were withdrawn at different time intervals and calcium release was measured. Values are mean ± SD for 40 individual experiments. Statistically significant variation is expressed as $^*P < 0.001$; @, not significant when compared to the basal level.

Aggregation was induced with 2 μM collagen and, at various time intervals, aliquots containing 1×10^4 platelets were withdrawn and the level of NO was measured. As aggregation proceeded there was a simultaneous increase in the level of NO in samples from patients with cirrhosis. The time-dependent increase was non-significant in normal platelets.

3.4 Cytosolic Ca$^{2+}$ level and platelet aggregation

During collagen-induced in vitro aggregation, the elevation in calcium level was found to be significantly low in platelets of patients with cirrhosis (figure 3). In normal subjects, there was a proportionate increase in the level of cytosolic Ca$^{2+}$ as aggregation proceeded.

3.5 NOS activity on platelet aggregation

NOS activity, which comprised the activity of both eNOS and iNOS, was found to be significantly elevated ($P<0.001$) in a time-dependent manner in platelets of patients with cirrhosis as aggregation proceeded (figure 4). The elevation was not significant in normal platelets.

Figure 4. Time course of nitric oxide synthase activity during aggregation of platelets.

Aggregation was induced in platelets as described in figure 1. Aliquots containing 1×10^6 platelets from normal subjects and patients with cirrhosis were withdrawn at different time intervals and NOS activity was measured. Values are mean ± SD for 40 individual experiments. Statistically significant variation is expressed as $^*P < 0.001$; @, not significant when compared to the basal level.

Platelets from patients with cirrhosis were pre-incubated with diphenylene iodonium chloride (0–40 μM) for 10 min, aggregation and cytosolic calcium were measured for a period of 9 min as mentioned in figure 1. Values are mean ± SD for 40 individual experiments. Statistically significant variation is expressed as $^*P<0.05$ when compared to the basal level.

J. Biosci. 33(1), March 2008
Table 3. Spearman rank correlation coefficient between NO–Ca\(^{2+}\), NOS–Ca\(^{2+}\), platelet aggregation–NOS, platelet aggregation–Ca\(^{2+}\)(n = 40)

<table>
<thead>
<tr>
<th>Variables</th>
<th>(r_s)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT–platelet aggregation</td>
<td>-0.314</td>
<td><0.05</td>
</tr>
<tr>
<td>BT–NO</td>
<td>+0.346</td>
<td><0.05</td>
</tr>
<tr>
<td>NO–Ca(^{2+})</td>
<td>-0.4021</td>
<td><0.05</td>
</tr>
<tr>
<td>NOS–Ca(^{2+})</td>
<td>-0.4413</td>
<td><0.05</td>
</tr>
<tr>
<td>Platelet aggregation–NOS</td>
<td>-0.4216</td>
<td><0.05</td>
</tr>
<tr>
<td>% aggregation–Ca(^{2+})</td>
<td>+0.4500</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Based on the critical values of the rank correlation coefficient (Spearman rho-\(r_s\)) null hypothesis of no correlation is rejected and it is concluded that the paired values are correlated.

BT, bleeding time; NO, nitric oxide; NOS, nitric oxide synthase; Ca\(^{2+}\), calcium.

3.6 Effect of eNOS inhibitor on platelet aggregation and cytosolic calcium

In the presence of the eNOS inhibitor DIC, aggregation was found to be improved in platelets of patients with liver cirrhosis (figure 5) in a dose-dependent manner associated with elevation of cytosolic calcium level.

The Spearman rank correlation test was done for the paired values of bleeding time (BT)–platelet aggregation, BT–NO, NO–Ca\(^{2+}\), NOS–Ca\(^{2+}\), percentage aggregation of NOS and percentage aggregation of Ca\(^{2+}\) (table 3). A significant negative correlation in the level of NOS activity and percentage aggregation, and a significant positive correlation were observed between the level of cytosolic calcium and percentage aggregation of platelets in patients with cirrhosis.

4. Discussion

Cirrhosis is associated with marked abnormalities in the systemic circulation along with haemodynamic alterations. A direct correlation between hepatocellular failure and BT (Violi et al 1994) suggests that worsening of platelet function is closely related to the degree of liver failure in liver cirrhosis. In our study, a prolonged BT in patients with cirrhosis compared with that in normal subjects demonstrates that human clinical cirrhosis is associated with an acquired defect of haemostasis. This is in accordance with the results of experimental cirrhosis (Violi et al 1994; Blake et al 1990). However, many reports highlight that thrombocytopenia (Jorgensen et al 1984; Boks et al 1986) as well as impairment in the production of coagulation factors are responsible (Aoki et al 1993; Violi et al 1992) for the bleeding complications seen in patients with cirrhosis. The clinical data (table 1) show that about 90% of the patients presented with bleeding complications as well as a reduced platelet count. Hence, the abnormal bleeding time may be due to thrombocytopenia and/or platelet activation defects with abnormal aggregation and adhesion.

Platelets possess receptors for agonists including collagen and ADP, and the activation of platelets occurs through these receptors. Extracellular matrix proteins such as collagen or soluble agonists such as thrombin, ADP and epinephrine bind with the receptors and effect activation. It has been reported that platelets have a larger number of strong receptors for collagen than for ADP (Daniel et al 1998, Siljander and Lassila 1999). Few disorders associated with platelet abnormality have been related to defective collagen binding to receptors. Our study also showed that the percentage inhibition of platelet aggregation in the presence of collagen is significantly greater than that of ADP in patients with cirrhosis.

The role of NO in the pathogenesis of haemodynamic abnormalities has been observed in experimental cirrhosis (Pizcueta et al 1992a,b). The level of platelet aggregation is significantly low in cirrhosis and is negatively correlated with the degree of NO and NOS activity. The role of NOS as a modulator of platelet function is of clinical importance.

NO, a product of L-arginine by NOS and a potent anti-aggregating agent, plays an important role in the regulation of platelet functions (Radomski et al 1987). The influence of NO on platelet aggregation has been well demonstrated by many workers (Radomski and Moncada 1993; Brune and Ullrich 1991). The dose-dependent effect of collagen on the stimulation of NOS activity and formation of NO in the platelets has been proved (Lantoine et al 1995). Lantoine et al have also stated that cytosolic Ca\(^{2+}\) participates in the regulation of NO synthesis. The anti-aggregatory role of NO has been confirmed and its central role in the recognition of a pathological mechanism associated with platelet abnormalities has been proved (Radomski et al 1990).

Factors that enhance platelet-derived NO synthesis include \(\alpha\)-tocopherol, by inhibiting protein kinase C (Freedman et al 1996, 2000), L-arginine by increasing NO synthesis and the intracellular thiol pool by enhancing the synthesis of S-nitrosothiol (S-NOSO), which limits the oxidative inactivation of NO (Anfossi et al 1999). Intracellular calcium flux and its level play an important role in the activation of platelet NOS.

The production of NO by endothelial and neuronal isoforms has been demonstrated in platelets (Burgner et al 1999). NO is produced by three different isoforms of NOS, which are widely expressed in all vascular cell types.

\(J.\) Biosci. 33(1), March 2008
mostly produced by the endothelial isoform (eNOS), plays a crucial role in vascular tone and structural regulation of the endothelial cells (Desjardins and Balligand 2006). Endothelium-derived NO has been reported to play an important role in the prevention of platelet aggregation and adhesion to the vascular wall (Rossier et al 1991; de Graaf et al 1992).

NO inhibits platelet aggregation (Stamler et al 1989; Cook et al 1990) and prevents thrombosis in a model of endotoxin-induced glomerular damage (Shultz and Raij 1992). The normal activation-dependent increase in platelet surface glycoprotein expression including P-selectin and the activation of glycoprotein IIb–IIIa complex are also inhibited by NO (Michelson et al 1996). The basal levels of NO and NOS in unstimulated platelets of patients with cirrhosis show a significant elevation when compared with platelets of normal subjects.

Platelet aggregation was found to be enhanced in the presence of the eNOS inhibitor DIC in a dose-dependent manner. This is an added evidence for the fact that eNOS expression inhibits platelet aggregation in liver cirrhosis. However, this aspect demands further study with non-specific NOS inhibitors to evaluate the fate of other isoforms in liver cirrhosis.

NO is more than a vasodilator as it exerts an antiplatelet action and plays a crucial role in the regulation of vascular haemostasis. Galley et al (1998) have shown that NO activity increases with increasing Child–Pugh score and is associated with the development of systemic hypertension. In view of this role that NO plays, the pharmacological modulation of NO synthesis is promising for the treatment of liver diseases in future, especially with the emergence of selective NO inhibitors and cell-specific NO donors.

In the present study, the basal level of cytosolic Ca2+ in platelets of patients with cirrhosis was significantly lower than that in normal cells. As aggregation proceeded, the level of cytosolic “free Ca2+” increased in normal platelets and the increase was significantly low in platelets of patients with cirrhosis. This shows that mobilization of Ca2+ from the stores to the cytosol was defective. NO donors have been reported to inhibit calcium mobilization when stimulated by agonists. NO can modulate basal cytosolic Ca2+ in unstimulated human platelets and also decrease Ca2+ mobilization from NO-sensitive internal stores when stimulated. Studies with Ca2+ ATPase inhibitors have proved the role of NO in the modulation of Ca2+ handling (Le Quan Sang et al 1996). NO production and eNOS expression are controlled by cytosolic calcium in cultured coronary artery endothelial cells (Ni et al 1998). Thus, we could state that the defective aggregation and activation of platelets in patients with cirrhosis might be due to the low level of cytosolic Ca2+ which results in the upregulation of eNOS in platelets.

5. Conclusion

The results of this study show that the defective aggregation of platelets in liver cirrhosis might be due to elevated NO generation by eNOS. The study also demonstrates that low cytosolic Ca2+ generation leads to the upregulation of NOS activity in platelets, which might result in disturbed haemostasis and bleeding complications in patients with cirrhosis. It is concluded that cell-specific NO blockers can be tried to treat the platelet abnormality associated with liver cirrhosis after conducting proper preclinical trials.

Acknowledgements

The authors (SA and AG) acknowledge the generous gift of blood samples by Dr S Jeevan Kumar, Department of Digestive Health Diseases, Government Peripheral Hospital, Anna Nagar, Chennai and also thank University Grants Commission, New Delhi, India for the financial assistance in the form of a Major Project Scheme.

References

Boks A L, Brommer E J, Schalm S W and Van Vliet H H 1986 Hemostasis and fibrinolysis in severe liver failure and their relation to hemorrhage; Hepatology 6 79–86
Brune B and Ullrich V 1991 Calcium mobilization in human platelets by receptor agonists and calcium-ATPase inhibitors; FEBS Lett. 284 1–4

J. Biosci. 33(1), March 2008
Burgner D, Rockett K and Kwiatkowski D 1999 Nitric oxide and infectious diseases; *Arch. Dis. Child.* **81** 185–188

Cooke J P, Stamler J, Andon N, Davies P F, McKinley G and Loscalzo J 1990 Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol; *Am. J. Physiol.* **259** H804–H812

Davies T A, Drotts D L, Weil G J and Simons E R 1989 Cytoplasmic Ca\(^{2+}\) is necessary for thrombin-induced platelet activation; *J. Biol. Chem.* **264** 19600–19606

Galley H F, Coomansingh D, Webster N R and Brunt P W 1998 Nitric oxide synthase activity is increased in relation to the severity of liver dysfunction; *Clin. Sci. (Lond.)* **95** 355–359

Le Quan Sang K H, Lantoine F and Devynck M A 1996 Influence of authentic nitric oxide on basal cytosolic Ca\(^{2+}\) and Ca\(^{2+}\) release from internal stores in human platelets; *Br. J. Pharmacol.* **119** 1361–1366

Marjanovic J A, Li Z, Stojanovic A and Du X 2005 Stimulatory roles of nitric oxide synthase 3 and guanylyl cyclase in platelet activation; *J. Biol. Chem.* **280** 37430–37438

Radomski M W and Moncada S 1993 Regulation of vascular homeostasis by nitric oxide; *Thromb. Haemost.* **70** 36–41

Rossier M F, Bird G S and Putney J W Jr 1991 Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments; *Biochem. J.* **274** 643–650

Siljander P and Lasila R 1999 Studies of adhesion-dependent platelet activation: distinct roles for different participating receptors can be dissociated by proteolysis of collagen; *Arterioscler. Thromb. Vasc. Biol.* **19** 3033–3043

J. Biosci. **33**(1), March 2008
Violi F, Ferro D, Basili S, Quintarelli C, Saliola M, Alessandrì C, Cordova C and Balsano F 1992 Hyperfibrinolysis increases the risk of gastrointestinal hemorrhage in patients with advanced cirrhosis; *Hepatology* **15** 672–676

MS received 24 September 2007; accepted 18 January 2008

ePublication: 6 February 2008

Corresponding editor: SUDHA BHATTACHARYA