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Abstract. Autocorrelation and spectrum analyses of amino acid residues along protein 
chains in a large data base has been performed. Results reveal the presence of general 
long range correlations. Similar analyses of simulated (random) peptides do not exhibit any 
such long range correlations. Based on the results of nur analysis, an attempt has been 
made to model the distribution of residues in protein sequences on a fractional Brownian 
motion and individual sequences as multi-fractals. For this purpose, the characteristics of 
an fractional Brownian motion namely, the scaling parameter H. the spectral exponent β 
and the fractal dimension D, have been described.
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1. Introduction 

Proteins are linear biopolymers made up of 20 different amino acids. The linear 
sequence of amino acids in a protein is called its primary structure. The primary 
structure folds to form a 3-dimensional, roughly spherical structure, but with a 
definite pattern that is called its tertiary structure. Just as the 26 letters of the 
(English) alphabet can make hundreds of thousands of meaningful words, these 20 
amino acids can make between 1010 to 1012 kinds of naturally occurring proteins 
each with a unique sequence (assuming a typical length of 200 residues). The 
sequences that are biologically significant (naturally occurring) are not random 
sequences but are quasi-random; they represent a minute fraction of the total number 
of theoretically possible sequences. The typical length of a protein sequence ranges 
from 10–5000 and the average (modal) length is about 250. Since any given random
sequence of polypeptide does not necessarily form a biologically meaningful active 
protein (though it may have a unique 3-D structure), the secret of the biological 
activity of proteins lies in their specific primary structures, i.e., the specific 
distribution of amino acid residues in their sequences.

A series of random numbers has no correlations between successive terms. Since 
we believe that protein sequences are not random, we have tried to study the 
positional correlation between successive amino acid residues in the primary sequences 
of proteins. This would help us distinguishing in general between sequences that 
do not exist in nature (i.e., random polypeptides that are not biologically meaningful) 
and sequences that are common in nature (i.e., natural polypeptides). In other 
words, we would be able to characterize and distinguish, at least in principle, the 
'allowed' primary structures in natural proteins. A number of short range correlations 
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have been observed by several workers (Cserzo and Simon 1989); these correlations 
mostly correspond to the regular secondary structures of the proteins. We have 
attempted to find existence of long range correlations in protein sequences.

As we are interested only in the general differences between proteins (natural 
polypeptides) and random polypeptide sequences, our results are expected to reveal 
only their average statistical properties. 
 
2. Methodology 

For our correlation analysis we used the Swis-Prot Protein Sequence Data Bank. 
Release 10.0, March 1989. It contains over 10,000 sequences and about 3 million 
residues. Lengths of protein sequences vary from a few residues to several thousands. 
Since the modal length is close to 200 (Mitra and Meeta Rani 1993) we have 
considered only those sequences that have at least 200 residues (5034 sequences) 
and residues beyond 200 have been ignored. As we are looking only for correlations, 
this is not expected to effect the results significantly, since correlations beyond 
200 are disregarded in our calculations.
 
2.1  Estimation of spectral density from autocorrelation function

Consider alanine: if we count the total number of alanines in first position of all 
these sequences, it gives the positional count of alanine at First position. Similarly 
we can find the positional count of alanine at all the positions. What we then get 
is the positional distribution count of alanine in protein sequences (up to length 
200).

We can make such positional distribution counts-for all the 20 amino acids. 
Thus we obtain 20 series of positional distribution counts, one for each amino 
acid. For each of the amino acids, these series have been used for calculation of 
position autocorrelation. The techniques used to analyse time-series were applied 
(Kendall et al 1983). In a time-series a variabie changing with time is studied but 
here a variable (i.e., the frequency of a residue) changing with position in protein 
sequences (represented on the x-axis) is studied. The methodology for finding 
correlations, however, is exactly the same.

To compare our results we simulated 5034 random sequences (same as the 
number being analysed) having the same amino acid composition as in the data 
base. These random sequences were analysed in the same way as real sequences.

Each of the 20 distributions may be denoted as Ut where t denotes the position 
and varies from 1 to 200 and r is an index denoting the amino acid residue that 
varies from 1 to 20. Each amino acid is therefore represented by a series of 200 
numbers.
 
The mean of the series may be denoted as E(U t

r ) = μr. 

The variance then will E(Ut
r-μr) = σr

2 = var Ur. 

The kth autocovariance is defined as E[(ut
r-μr) * (Ur

t+k-μr)] = γk
r 

and the kth autocorrelation is defined as ρk
r = ρr

-k = γk
r/σr

2. 

The Fourier transformation of the autocorrelations yields the spectral densities.
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Spectral density is defined as 

 
The x-axis denotes frequencies (in terms of the angular frequency α) and is plotted 
as log (α). On the y-axis, the spectral densities are plotted as log [w(α)]. The graph 
of log [w(α)] vs log (α) is called the spectrum. The spectrum is again a series of 
180 numbers that have been plotted directly after smoothening for visual presentation. 
The slopes are least square approximations using all these points. The least square 
regression slopes were obtained directly from the plotting package (Sigmaplot 4·01). 
There are reasonably prominent peaks in these spectra suggesting long range 
correlations. However, these peaks were not explicitly eliminated for the computation 
of the spectral exponent (see below).
 
2.2  Studying the spectrum

The spectrum reveals a good deal about the relationship between various positions 
occupied by a residue. The characteristics of this spectrum are related to several 
important parameters of the positional correlations of the residue being studied. 
The high peaks always refer to strong correlations and less intense peaks refer to 
weak or no correlation depending upon the relative heights of the peaks in the 
spectrum. The position on x-axis corresponding to the peak in the graph refers to 
the periodicity of the residue, i.e., high frequencies corresponds to short periodicities 
(and vice versa). Hence presence of high peaks in the low frequency region indicates 
long range correlations and their presence in high frequency region indicates short 
range correlations. In general, short range correlations are reasonably well established 
as originating from the regular secondary structures of the proteins (e.g, alpha 
helices and beta pleated sheets). Long range correlations on the other hand give 
rise to the specific folding patterns that are not very well understood at present.

Since the graph was very noisy, the peaks were not very clear. In order to find 
the true peaks we smoothened the curve using a spectral window of order nine. 
The smoothening function is a rectangular window covering nine points. The 
smoothening process is described below is as prescribed by Daniell (1946). The 
smoothening process does eliminate some high frequency components of the spectrum 
but this does not affect our results.
 
2.3 Smoothening the spectra

Smoothening a sample spectra removes the inconsistencies of the estimators. The 
spectra obtained were smoothened by using a spectral window of order nine 
(rectangular function) as per the procedure described by Daniell (1946). Essentially, 
it involves taking an average of the nine values falling within the window and 
assigning the average to the middle point in the smoothened spectrum.

A program was written in Turbo Pascal for smoothening the spectra. The 
smoothened graph was analysed and the frequencies corresponding to the highest 
peaks correlate to the most common frequency of distribution of the residue. Broad 
peaks refer to a range of occurring frequencies. Low frequencies indicate long 
range correlations in the distribution of the residue, whereas high frequencies 
indicate short range correlations and medium magnitudes of the frequencies indicate 
 



10            Meeta Rani and Chanchai Κ Mitra

intermediate range correlations. The negative slope of this graph gives the spectral 
exponent, β.
 
2.4  Spectral exponent β and scaling parameter Η

In a typical case, it is not expected that only one periodicity (or frequency) is 
present. In such a case, multiple peaks are generally expected. In this particular 
situation, a very large number of peaks are observed with different intensities. As 
a comparison, white noise contains all frequencies in equal amount. Hence the 
spectrum of a white noise is expected to be a horizontal straight line. Other kinds 
of noise patterns are possible in which all frequencies are present in unequal 
amounts. The distribution of the intensities (for various frequencies) is measured 
by the spectral exponent. The spectral exponent β is the negative slope of the 
graph of the spectrum plotted as log (spectral density) vs log (frequency). In other 
words, β measures the decrease of the intensity with frequency on a double 
logarithmic plot. The spectral density varies inversely as the spectral exponent β. 
If β is negative, the intensity increases with frequency. In other words, long range 
correlations are predominant, β is related to the scaling parameter H. The scaling 
parameter reflects how the distribution function changes when the independent 
variable is scaled (i.e., by multiplying with a given constant r). The scaling parameter 
Η characterizes the scaling behaviour of fractal traces, random processes, noises, 
etc. Defined explicitly, if we consider a distribution function y = f(x), then for a 
scale r for x (i.e., x:= r·x)y scales as rH y (i.e., y: = rH ·y). For a white noise, 
Η is 0·5. Qualitatively, it gives an idea about the correlations in space (or time, 
as the case may be). In a random walk, the mean distance travelled scales as the 
square root of the number of steps taken. Η lies in general between 0 and 1. Η 
and β are related by the simple relation H = (1—ß)/2 for a distribution with a 
Euclidean dimension of unity. So, Η = 0 and Η  = 1 correspond to the cases 
β = 1 and β = – 1. Thus both β and Η provide important information about the
positional correlations of amino acid residues in protein sequences. One can find 
nature of distributions, whether they are linear, random or fractal (see discussions) 
(Vass 1988).
 
3. Results

The graphs of the 20 spectra (corresponding to the 20 amino acids) for the real 
sequences are presented in figure 1. The graphs of the spectra for the amino acids 
in the case of random sequences are presented in figure 2.
 
3.1 Real sequences

The spectral exponent β was found to lie between 0·33 and 0·05 for all residues 
(except methionine, which had a β value of –0·07). β has a significant non-zero 
 
 

Figure 1. Logarithm of the spectral densities of the positional frequency distributions of 
the twenty amino acids. The frequency data have been collected from the data base of 5034 
sequences. The angular frequency is plotted on the x-axis on a logarithmic scale. The slope 
of the graph is designated 'm' and is indicated on the left hand side (bottom).
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Figure 1. 
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Figure 2. 
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value compared to the random sequences (see random sequences). The average 
value of β turns out to be 0·13 (excluding methionine) and 0·03 (including 
methionine)· Presence of high peaks in the low frequency regions indicates long 
range autocorrelations· This is also apparent from figure 1.

The scaling parameter H, in case of all the residues for real sequences was 
found to be in the range 0·48 and 0·34, with an average of 0·45 (including 
methionine). For a completely random sequence Η is expected to be 0·5.
 
3·2 Random sequences

Small values of β for the random sequences suggest that both low and high 
frequencies are equally probable (as s
een in case of all residues except methionine).
High values of β would indicate that high frequencies are far less common compared 
to low frequencies.

In case of simulated random sequences β values are in the range  
-0·043 to 0·03. Since the values are for random sequences, the expected values
are zero and the average slope turns out to be 0·007 (very close to 0 as expected). 
Also these spectra showed a lack of any long range correlation in any residue 
distribution as indicated by lack of high peaks in the low frequency regions. This 
is clear from figure 2·

The scaling parameter in case of random sequences was in the range 0·48 to
0·52 (with an average of 0·5), as expected in case of random noises. For a 
completely random sequence Η is expected to be 0·5.

The fractional Brownian motion (fBm) characteristics, i.e., β, Η and D for the 
distributions of all residues are presented in table 1· The relation between the 
spectral exponent β and the fractal dimension D has been plotted in figure 3. The 
least square regression line and the corresponding 99% confidence limits are also 
shown· We note that the spectral exponent is linearly related to the fractal dimension, 
as expected for a fBm· A similar relation is seen with the scaling parameter, Η
and the fractal dimension D, but since the spectral exponent and the scaling 
parameter are linearly related, this graph has not been presented.
 
4. Discussions and conclusions

4·1 Fractal geometry: the geometry of nature?

Fractals are· geometrical objects showing self-similarity (Mandelbrot 1982) at all 
magnifications (or scales), i.e., they appear similar at all magnifications. The 
self-similarity may be geometrically exact or statistically apparent. But self-affine 
fractals differ from both of these· Self-affine fractals show statistical self-similarity 
only when the x and y axes are magnified by different scales. The importance of 
fractal geometry is due to the fact that it has become a very convenient and 
 
 

Figure 2. Logarithm of the spectral densities of the positional frequency distributions of 
the twenty amino acids obtained from the 5034 simulated random sequences· The log spectral 
density is plotted on the y-axis and on the x-axis are plotted the angular frequencies also 
in a logarithmic scale· The slope of the graph, designated 'm' and is indicated on the bottom 
left hand side.
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Table 1. fBm characteristics of positional distributions of residues in protein sequences·

 

 
Figure 3. A plot of the spectral exponent β against the fractal dimension D of the positional 
distributions of the 20 amino acids The straight line shows the least square regression line 
and the two dotted lines represent the 99% confidence interval based on D. We do not 
expect a perfect correlation between the two considering the limited sample size used in 
our analysis. The distribution of methionine is abnormal (as several sequences in the data 
base used have been determined from the cDNA sequences) and this results in the negative 
spectral exponent for this residue.

 
popular method for analysing objects, processes and phenomena occurring in nature. 
This is because fractal geometry is capable of providing the language and formalism 
for studying physical processes like diffusion limited aggregation, condensation of 
matter on microscopic scale, etc. (Orbach 1986); for describing biological phenomena 
like patterns existing in long DNA sequences (Peng et al 1992; Voss 1992; Nandy 
1994), branching patterns in the network of neurons, arteries, bronchioles, trees, 
symmetries and patterns of plants and flowers etc. (Oppenheimer 1986)· The origin 
of fractal patterns in nature is due to chaotic dynamics of non-linear deterministic 
systems (Devaney 1988).
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4.2 Fractal model for amino acid distribution and protein sequences
 
In the usual Brownjan motion or random walk, the sum of the independent increments 
or steps leads to a variation that scales as the square root of the total number of 
steps. Thus Η = 1/2 corresponds to a normal Brownian motion. A Brownian motion 
where Η ≠ 1/2 is called fBm (Voss 1988). An fBm trace is characterized by scaling
parameter H, fractal dimension D and spectral exponent ß. An fBm trace repeats 
statistically only when the x and y co-ordinates are magnified by different amounts. 
If x is magnified by a factor r (x becomes rx), then y must be magnified by a 
factor rH

 , (i.e., y becomes rH
 y). This non-uniform scaling where shapes are 

statistically invariant under transformations that scale different co-ordinates by 
different amounts is called self- affinity as already mentioned.

Such self-affine processes are not random but have some correlations. A statistically 
self-affine fractional Brownian function VH provides a good model for many natural 
scaling processes and shapes. As a function of one variable (E = 1), it is a good 
model for noises, random processes, music (Voss and Clarke 1975) etc. We have 
modelled the residue distribution in protein sequences as an fBm and its spectral 
exponent β, the scaling parameter Η and fractal dimension D, have been calculated. 
We also note the expected linear relation between the spectral exponent β and the 
fractal dimension D. The observed slope of this line (–0·5) is in agreement with 
the theoretical considerations (Voss 1988).

Based on our studies and results we find that the distribution of amino acids in 
protein sequences can be modelled as a fBm. Hence an fBm model has been 
proposed. The characteristics of an fBm relate to the fBm integrated over an interval 
of time. Differentiating such an fBm gives what is called fractional Gaussian noise. 
Similarly the characteristics of the distribution of a residue relate to the average 
Statistical properties of the residue in the protein sequences. Differentiating such
an fBm would give us the distribution of a residue in an individual sequence. 
Hence distribution of a residue in an individual sequence is a fractional Gaussian 
noise and its distribution in the complete set of natural proteins is a fBm. Since
an individual sequence consists of several residues (the distribution of each being 
a fractal) an individual protein sequence can be considered a multi-fractal. Shapes 
and measures requiring more than one fractal dimension are known as multi-fractals.
If a sequence contains all the 20 residues then it requires 20 fractal dimensions 
(one for each residue) to describe it. Proteins like collagen having fewer kinds of 
residues would be multi-fractals requiring lesser number of fractal dimensions. 
Different sequences of a given family, say myoglobin for example, have similar 
primary sequences, hence based on our model they are multi-fractals of one kind. 
After characterising this family of multi-fractals one can in principle predict unknown 
sequences belonging to the family yet undiscovered, but existing in nature, by 
computer simulations (utilising the parameters already characterized for the protein 
family).

Also one can study the evolution of protein families by observing how the
multi-fractal (i.e., primary sequence of a protein) slowly changes with change
in the parametres of the multi-fractal. It may also be extended to the tertiary 
structure of proteins. Work is in progress to sort out the details of such an 
endeavour.
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