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Abstract. The prediction of the critical point of a phase transition is a topic of great current interest, and is of utility
in many practical contexts. Therefore, the identification of precursors, or early warning signals of the critical point,
has become the focus of current interest. Recent model studies have shown that a series of small transitions, which
have been called microtransitions, act as precursors to the percolation transition. Here, we identify the existence of
microtransitions in two distinct networks, for two distinct processes.

The first case is the process of avalanche transmission on branching hierarchical networks. Here, typical real-
izations of the original lattice of this network exhibit a second order transition. We note that microtransitions in the
variance of the order parameter are seen in this case. Additionally, the positions of the microtransitions follow a
scaling relation. The scaling relation can be used to calculate the position of the critical point, which is seen to be
in agreement with the observed result.

We also introduce this method of identifying the microtransitions occurring before the tipping point to a com-
plex real world system, the climate system. We analyse the discontinuous first order phase transition occurring in
the climate networks. We apply the percolation framework to these networks to analyse the structural changes in
the network and construct an order parameter and a susceptibility. Microtransitions can be found in the behaviour
of the susceptibility. These can be used to predict the tipping point in the system. We discuss possible applications
of this.

Keywords. Complex systems; networks; branching hierarchical network; percolation; microtransitions; El Nino
southern oscillation.
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1. Introduction

The identification of precursors of phase transitions
has been a topic of current research interest. The
existence of phase transitions in real life situations
such as congestion in road and internet traffic [1],
blackouts in power grids [2] and monsoon dynamics
[3] has led to the realization that the prediction of
phase transitions is of great practical utility. It is in
these contexts that the identification of precursors to
the transitions assumes great importance. Early warn-
ing signals of transitions have been found in diverse
phenomena ranging from the medical sciences, to
ecosystems and the climate system [4]. The climate
system is a very crucial and complex system con-
sisting of various subsystems such as the atmo-
sphere, the ocean, the cryosphere, the biosphere
and the lithosphere. The intricate dynamics in these
subsystems leads to various climatic phenomena such
as cyclones, the monsoon and oceanic currents. Each
climatic phenomenon occurs at a different time scale.
They can vary from a few seconds to a few days, e.g.,

in the case of precipitation and cyclones. For the ocean,
these scales range from a few decades (e.g., in the case
of surface ocean circulation) to hundreds or even
thousands of years (e.g. deep ocean circulation). Thus
understanding and finding precursors of these climatic
phenomena becomes a challenging task. These precur-
sors are of different kinds, depending on the context. In
the case of the transition to an icehouse earth, the
increased values of the autocorrelation in the temper-
ature function as a precursor to the transition [5]. The
formation of the largest cluster in a climate network and
a decrease in the susceptibility can also serve as an
indicator of an anomalous climatic event [6]. The pre-
diction of the monsoon period can be based on a critical
transition precursor by identifying geographic regions
which function as tipping elements of the monsoon and
using them as observation locations for predicting onset
and withdrawal dates [7]. In the context of theoretical
models, microtransitions, where functions of the order
parameter show small, but abrupt changes, have been
used as precursors and predictors of the phase transi-
tion in the case of the percolation transition [8].
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The specific model considered for avalanche trans-
mission, is a 2D load bearing hierarchical network
which can serve as a model for diverse systems rang-
ing from natural systems such as river networks [9]
and granular media [10], as well as for social sys-
tems [11] and is also similar to models that arise in
biological contexts as models of lung inflation [12].
Here we investigate the microtransitions in avalanche
transmission for the 2D load-bearing hierarchical net-
work, where the network shows a transition from a state
where most of the transmissions are successful, i.e. all
test weights get absorbed, to one where most of the
transmissions fail. This transition has been seen to be
continuous for typical realizations of the branching
hierarchical lattice (which we call the original lattices).
We see the presence of microtransitions, signalled by
peaks in the relative variance of the order parameter in
avalanche transmission on the original lattice. The
positions of the microtransitions act as precursors to the
transition point for this case. They follow a scaling law,
and the critical point can be predicted with good accu-
racy, using the scaling behaviour.

Finally we discuss microtransitions for a climate
network system constructed out of oceanic observa-
tions, a complex time series is observed at different
geographic locations (as defined by latitude and lon-
gitude measures) which constitute the network nodes
and links are constructed based on the similarities of
the dynamics between the pairs of nodes. We calculate
the normalized largest cluster and susceptibility of the
network and analyze the microtransitions occurring
just before the percolation phase transition. Microtran-
sitions have also been seen in the case of avalanche
transmission in branching hierarchical networks [13].
These microtransitions can be used to predict the phase
transition point.

2. Branching hierarchical lattice and avalanche
transmission process

The 2D load-bearing hierarchical network considered
here, is based on a regular triangular lattice. Figure 1
shows a typical realization of the 2D load-bearing
hierarchical network [14]. Here, the solid circles
indicate the nodes and the solid lines represent the
links of the network. Every node can connect with its
nearest neighbours in the layer below with probability
1/2. Thus a site i in the layer L can connect to either
of its nearest neighbours in the layer L + 1. Each node
is assigned a number, which represents its capacity.
Every node in the topmost layer has unit capacity. The
capacity wL

i of a site i in the layer L is the sum of the
capacities of sites to which it is connected in the layer

(1) (1) (1) (1) 1L = 

1C

(3) (1) (3) (1) 2L = 

2C

(1) (5) (4) (2) 3L = 

3C
(7) (5) (1) (3) 4L = 

4C

Figure 1. A typical realization of the network, the original
lattice of size M = 4 × 4. The solid circles are the nodes and
solid lines are the links of the network. The capacity of each
node is the number indicated in brackets next to the node.
The beaded line is the trunk of the network. C1 and C2 are
the clusters.

above and its own capacity one. The capacities obey
the following equation:

wL
i = l(iL−1

l , i
L)w(iL−1

l ) + l(iL−1
r , i

L)w(iL−1
r ) + 1 (1)

L=1, . . . ,N, where N is the total number of layers in
the network. The link l(iL−1

l , i
L) takes value 1 if a left

connection exists between the ith site of the layer L and
the site to its left, viz. iL−1

l in the layer L− 1. Otherwise
it takes the value zero. The link l(iL−1

r , i
L) for the right

connection has similar behaviour, with iL−1
r being the

site to the right in the L − 1 layer.
The network consists of many clusters, where a clus-

ter is the collection of connected sites of the network.
In figure 1 the clusters C1 to C4 are examples of typ-
ical clusters of different sizes. The size of a cluster is
defined as the total number of connected sites in that
cluster. The cluster having the largest number of con-
nected sites is the maximal cluster, which is the cluster
C1 here. The strongest path from the top-most layer to
the bottom-most layer in the maximal cluster is called
the trunk of the network. Any typical realization of the
network as shown in figure 1, which has been called
the original lattice [14], is the q(0, 1) case of the Cop-
persmith model for granular media [10], is a model for
river networks [9], is also similar to the voter model
[11] and is a model of the lung inflation process [12].

The avalanche transmission process, or the process
of weight or packet transmission along the connected
paths of the network [14, 15] is defined as follows:
when a weight W is deposited on a site in the first layer
it retains a weight equal to its capacity Wc and transmits
the rest W −Wc to the site it is connected to in the layer
below. Thus the weight is transmitted in the downward
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Figure 2. The order parameter as a function of test weight
for the original lattice of size M = 50 × 50, averaged over
200 realizations. The test weight (W) here is the fraction of
the total number of test weight and the total capacity of the
network.

direction and the sites involved in this process consti-
tute the path of connection. If there is still excess weight
left at the bottom-most layer of the network it is then
transmitted to a randomly chosen site of the first layer.
Let PL be the site on such path P. We can write

Wex(PL) = W −
L∑

k=1

Wc(Pk). (2)

If a test weight transmitted in this way encounters a
fully saturated site, and also has no alternate path to
take, then the transmission is considered to have failed.
If the transmitted weight is absorbed at some sites in the
network then the transmission corresponds to a success-
ful transmission. The order parameter in an avalanche
process on the 2D load-bearing hierarchical networks is
defined as the fraction of transmissions that are success-
ful. The order parameter for the typical realizations,
i.e. the original lattice varies continuously with the test
weight (figure 2) [16].

We note that the transmission of messages on these
base substrates shows a percolation transition on the
original lattices [16].

3. Microtransitions in avalanche transmission

We now study microtransitions in the avalanche trans-
mission on the 2D load-bearing hierarchical network.
The microtransitions are signalled by microscopic
changes in the order parameter. The global transition in
the system is the transition of the order parameter at the
critical point, from values of order zero to values of
order one, whereas the microtransitions are small
changes in the order parameter well before the tran-
sition point. The study of the avalanche transmission

on the network shows a transition of the network from
the state where all avalanches are transmitted, to a state
where almost all transmissions fail, as the test weight,
which is placed on the top layer, increases. In order to
study the microtransitions which occur before the tran-
sition, we look at the variance and relative variance
of the absorbed weight, which is the weight absorbed
by the occupied nodes of the network for a given test
weight. The absorbed weight has some non-zero value
in the free flow state and it is zero in the state of failure
of avalanche transmissions. The variance V and relative
variance RV of the absorbed weight is defined as

V =
(
〈O2〉 − 〈O〉2

)
and RV =

(
〈O2〉 − 〈O〉2

)

〈O〉2 , (3)

where O is the weight absorbed by the occupied nodes
of the network for some given test weight. The av-
erage is taken over the total number of nodes which
are occupied. If a node is partially occupied we
consider that as an occupied node.

Here, we calculate the average value of the vari-
ance of the absorbed weight. We always deposit the
test weight at a randomly chosen site in the top-most
row and the weight transmits in the network accord-
ing to the process defined in section 3. We calculate the
variance and relative variance of the absorbed weight
for different realizations of the network. The average
over the realizations reduces the sharpness of the
peaks in the variance plot for the original lattice com-
pared to a single realization of the original lattice.
The variance and relative variance are shown in fig-
ure 3a for a 50 × 50 original lattice, averaged over five
realizations. The scaling relation for the peak posi-
tions here is Pc − Pi+1/Pc − Pi and turns out to be a
constant (figure 3b). We take Pc to be the test
weight that corresponds to the maximum value of
susceptibility, where the susceptibility is defined as

χ = M
√
〈S 2

1〉 − 〈S 1〉2, where S 1 is the fraction of the
occupied sites and is a function of the test weight (fig-
ure 3c) [16]. The average is taken over the realizations
of the original lattice.

Using the scaling relation plotted in figure 3b we
write

Pc − Pi+1

Pc − Pi
= 0.9942. (4)

In the case of the 50 × 50 lattice, we find that Pc =

0.7646 using the values i = 36, P36 = 0.1439 and
P37 = 0.1475. The value of Pc from the scaling rela-
tion is close to the value of Pc from the order parameter
plot [13].
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Figure 3. (a) The variance and the relative variance of total absorbed weight as a function of test weight for the original
lattice of size M = 50 × 50, averaged over five realizations. (b) The scaling relation for the original lattice behaves like a
constant function. (c) The susceptibility for the 50 × 50 original lattice averaged over five realizations. Here, Pc is the test
weight corresponding to the maximum value of susceptibility.

We note that the microtransitions act as precur-
sors of the phase transition in avalanche transmis-
sions on the original lattice. Here, the scaling relation
(Pc − Pi+1)/(Pc − Pi) predicts the critical point with
good accuracy. This scaling relation does not depend
on the realizations of the network and the choice of
channels of transmission.

4. Climate networks

In this section, we construct a climate network which
is based on near surface air temperature data col-
lected at the grid points (nodes) of a geographic grid
based on latitude and longitude values. The datasets
analysed consist of daily near surface (1000 hPa, nearly
equal to one atmospheric pressure) air temperature
data of ERA-Interim reanalysis (The European Cen-
tre for Medium-Range Weather Forecasts (ECMWF))
[17]. This dataset contains the information about daily
near surface (1000 hPa) air temperature [T̃ y(d)] within
the period 1979–2017 at 1, 15, 680 geographical nodes

whose location is fixed by a pair of latitude and lon-
gitude. We extracted a data for N = 726 nodes (i.e.,
longitude–latitude grid point) for 7.5◦ grid resolution
from this huge data file. We constructed the climate net-
work based on the similarity of the dynamics between
the nodes [6] and studied the evolution of clusters.

We calculate the filtered daily near surface air tem-
perature T y(d) and the cross-correlation function Ci, j as
follows:

T y(d) =
T̃ y(d) −mean(T̃ (d))

std(T̃ (d))
, (5)

Cy
i, j(τ) =

〈T y
i (d − τ)T y

j (d)〉 − 〈T y
i (d − τ)〉〈T y

j (d)〉
√

(T y
i (d − τ) − 〈T y

i (d − τ)〉)2 ·
√

(T y
j (d) − 〈T y

j (d)〉)2
,

(6)
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Figure 4. (a) The susceptibility χ as a function of the link strength C for the network one year before a very strong El Niño
episode, December 2014. (b) Δχ as a function of the link strength C. (c) The scaling relation for the relative Δχ positions,
(Cc −Ci+1)/(Cc −Ci) as a function of the index i.

where ‘mean’ and ‘std’ are the mean and standard
deviation of the temperature on day d over all years
and τ is the time lag between 0 and 200 days. Only
the temperature data points prior to day d are consid-
ered. Averages (〈 〉d) are taken over 365 days. The
link weight is defined as the maximum of the cross-
correlation function max(Cy

i, j(τ)). Links were added
one by one according to the link strength, i.e., we have
first added the link with the highest weight (maximum
of the cross-correlation function Cy

i, j), and continued
selecting edges ordered by decreasing weight.

During the evolution of our network, we measured
the size of the normalized largest cluster (s1) and
susceptibility (χ).

s1 =
S 1

N
, (7)

χ =

∑′
s s2ns(C)∑′
s sns(C)

. (8)

Here, S 1 is the size of the largest cluster and N is the
total number of nodes in the network, ns(C) is the num-
ber of clusters of size s at edge’s weight C, and the
prime on the sums indicates the exclusion of the largest
cluster S 1 in each measurement. The percolation tran-
sition in this climate network can be quantified via the
order parameter viz. the existence of giant component
(cluster) containing O(N) nodes.

We note that the susceptibility shows a distinct pat-
tern one year prior to a very strong El Niño episode.
The red line indicates the value of the link strength C
at which the climate network undergoes the percolation
transition, i.e. the formation of a giant component (clus-
ter) containing O(N) nodes (figure 4a). In figure 4b we
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have plotted the magnitude of successive jumps in the
susceptibility with respect to the link strength, which
marks the position of the values of C at which the jump
occurs. Using the scaling relation plotted in figure 4c
we write

Cc −Ci+1

Cc −Ci
= 0.9956. (9)

Such a scaling relation enables us to predict the
transition point at which the network undergoes the
percolation transition. We have analysed these micro-
transitions for each network of each year within the
period 1979–2017 and we found that for the indicator
year 2014, Cc = 0.4669 using the values i = 44,C44 =

0.6719 and C45 = 0.6710. The value of Cc from the
scaling relation is in reasonable agreement with the
actual value of Cc = 0.4522 from the order parameter
jump.

We note that 2014 is a pre-El Niño year. A similar
pattern of activity is observed for all the pre-El Niño
years. Thus we observe a distinct pattern of microtran-
sitions before the percolation phase transition point for
all the indicator years prior to an El Niño activity. This
may be useful for the prediction of El Niño activity in
the subsequent year.

5. Conclusions

We have seen that microtransitions appear in dynamical
processes on two distinct networks. One is the process
of avalanche transmission on 2D load-bearing hier-
archical networks. Here, the scaling relation for the
original lattice behaves as a constant function. The
scaling behaviour is used to predict the critical point.
The calculated value of the critical point from the
scaling relation is close to the value of critical point
obtained from the order parameter plot. Thus, the
microtransitions behave as precursors of the transition
for the typical realization of the branching hierarchical
lattice, and can be used to predict the point of transition.
We have also seen that microtransitions show scaling
behaviour in a very complex real climate network sys-
tem. This can also be used to predict the critical point.

We hope to explore further whether the kind of micro-
transitions studied here can be used to predict complex
climatic phenomena like the El Niño phenomenon, the
onset of the monsoon, or cyclonic activity.
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