
Bull. Mater. Sci., Vol. 10, Nos 1 & 2, March 1988, pp. 77-83. © Printed in India. 

Random walk on a Fibonacci  chain 
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Abstract. Random walk on a Fibonacci chain is studied both numerically and analytically. 
We demonstrate that the long-time behaviour is diffusive. 
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1. Introduction 

With the discovery of the quasi-crystalline phase of matter there has been an intense 
activity in the study of the properties of quasi-periodic systems. Needless to say that 
one-dimensional quasi crystals have received their share of attention due to the fact 
that they are the simplest of their kind retaining many features of higher dimensional 
systems. The study of spectral properties has received the maximum attention (Nori 
and Rodrigues 1986; Kohomoto and Banavar 1986; Valsakumar and Ananthakrishna 
1987; Kumar and Ananthakrishna 1987 to mention only a few). In contrast the prob- 
lem of diffusion has received much less attention. Numerical evaluation of the diffu- 
sion constant has been reported by Kohomoto and Banavar (1986). Kantha and Stin- 
chcombe (1986) have undertaken a renomalization group approach. They show that 
both diffusive and anomalous behaviour may arise depending upon the choice of ini- 
tial waiting time distribution. 

The purpose of this paper is to show that the method we developed earlier for 
analysing the spectral properties can be applied here allowing us to demonstrate the 
diffusive behaviour for long times. We also present an approximate evaluation of the 
diffusion constant. Further we present a detailed numerical study of the random 
walk. 

2. Model for diffusion on a one-dimensional quasi-periodic lattice 

Consider a Fibonacci chain with two length scales L and S arranged in an quasi-periodic 
sequence. Due to the fact that there are two length scales, we have three types of sites 
~,/3 and 7 as shown in figure 1, suggesting three distinct jump probabilities W~, W~ 
and ~ corresponding to jumps from W,,+l.n ,, i=~,/3 and 7- The master equation 
reads 

dP./dt= IV...+, Pn+l + Wn.n-1 Pn-,-P.. (1) 

Since the chain is quasi-periodic the W's are distributed quasi-periodically. Further, 
the random walk is an inhomogeneous random walk. Following our earlier method 
we can cast (1) in the following form 

dG (k, t) / '  
dt - [ e x p ( - i k ) - l ]  G(k, t)+2isink j W(k') G(k-k', t)dk', 
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A Fibonacci chain with three distinct sites and the associated jump probabilities. 

where, 

G ( k , t ) = ~ P .  exp(ikn) and W(kj=~'W.+l , .exp( ikn) .  (3) 
n 

It can be noted that the relative number of e, fl and 7 appears in the ratio r -  ~ : 1 1. 
Therefore we choose the jump probabilities 

IV. + 1 , .  = W~, W.~ + 1, .~ = Wp and IV., + 1,., = W~ 

(and their compliments) disbributed in the same quasi-periodic manner  as the sites 
~, fl and 7 (see figure 1). Following the projection method (Zia and Dallas 1985; 
Valsakumar and Kumar 1986), the structure factor W(k) can be obtained by 

choosing the slit widths S~ = dl/Z x/zr, S o = S t = dl/x/zr,  where r = dl/d 2 is the ratio of 
the two lengths scales chosen (which in principle could be any two lengths) and 

z = ~ (1 + x/5). Then 

W(k) = W~ ~ exp  (ikn,) + Wa ~ exp (ikno) + W~ ~ exp (ikn~). 

The calculations have been carried out for a general dl and d2 (see Valsakumar et al 
1987). However, since for the present case it is sufficient to have dl =dz = 1, we get a 
simpler expression for W(k) 

{W~expI-i4)"'(~)l sin4%./r + W~exp(-i34).,.)sin4).,. 
w(k) = ..my' ~ 0 + ~) eP.m/~ (I + ~1 ~.,. 

W~ exp (-i~b,m) i n . h )  
-~ s - . v , .  }. 6(k-k .m) ,  (4) 

( l + z )  ~.,. J 

where 

zt (m - n) 2~ (m + nz) 
q~,m- and k . , , -  (5) 

l + z  l + z  
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The wave vectors k,,, are bounded between 0 and 2re. Using (4) in (2) we get 

dG(k, t) 

dt 
- [exp ( - ik) - 1] G (k, t) + 2i sin k ~ ;(nm G (k - k,,,, t), 

n , m  

where X,m is the quantity in curly bracket in (4). For simplicity we take W~ = ½ and 
= 1 - W~ thereby reducing the number of independent jump probabilities to one. 

(Note this choice is suggested by the symmetry, see figure 1). Then, we have 

dG(k, t) 
dt (cos k -  1) G(k, t )+2i  s i n k ~ ' z , m G ( k - k . m ,  t), (6) 

n , m  

where the prime on the summation sign means that the n = m = 0  contribution is 
absorbed in the first term. It is worth noting the similarity of this equation with the 
harmonically coupled chain with three spring constants. This similarity will be used 
later to obtain an approximate expression for the diffusion constant. When W~ = W~ 
= W r = ½ is chosen (6) reduces to the expression for the usual random walk. 

3. Numerical results 

We have carried out numerical work which we briefly report below. The investiga- 
tions include the study of the probability distribution (for Wp in steps of 0"1), the 
mean square distance with and without averaging over the initial configurations. 
Figure 2 shows a plot of the probability distribution for W a =0.1, time steps 3000 
with initial starting point as the fl site. The distribution has a feature of the proba- 
bilities peaking at (roughly) every eighth site with a general profile of a Gaussian. 
When W B (W~) is small then the difference in the occupancy of the fl (7) sites compared 
to 7(fl) site is high. As Wp--. 1 these differences go to zero restoring a continuous 
Gaussian profile. The corresponding a:  (not averaged over the initial sites) has 
sawtooth character over successive time steps. A typical plot for three values of W a 
up to 50 steps where 5000 to7000 histories are averaged is shown in figure 3. (It 
should be mentioned here that ( R )  fluctuates between 1 and -1) .  However when 
averaged over initial sites this sawtooth character disappears. In figure 4, we have 
plotted a 2 (averaged over initial sites) for several values of ~ (values marked in the 
figure), It is seen that the diffusion constant shows an increase from small values to 
maximum at W~=½ again falling as W ~ I .  The diffusion constant we obtained as a 
function of W a is shown in figure 5. The shape of this curve is in general agreement 
with the results of Kohomoto and Banavar (1986). It should be pointed out that the 
correspondence between the two models is not one to one since we have used all the 
three distinct sites. This might be the reason why D(W~) is nearly symmetric in our 
model in contrast to the results of Kohomoto and Banavar (1986) (wherein they use 
only two types of sites). 

4. Perturbative approach 

In studying the spectral properties of one-dimensional quasi crystals, it has been 
shown by a number of authors (including our group) that there is a dense set of gaps 
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Figure 2. Probability density for B,~ = 0,1 and 3000 time steps. Origin corresponds to the 
central peak. 

appearing at k = k,m/2. Using an approach similar to calculations of the band gap at 
the band edges, we were able to derive an expression for the gaps (Valsakumar and 
Ananthakrishna 1987; Valsakumar et al 1987). Using this we were able to demons- 
trate that the magnitude of the gaps goes to zero as k ~ 0  for the vibrational spec- 
trum. Since the equation of motion for the vibrational problem is formally the same 
as (1) (if we consider the long-time limit of (1). i.e. the number of sites covered by the 
random walker is large), this would imply that z ~  k 2 where z is the conjugate 
variable of t. We shall make use of the fact that the eigenvalues exhibit jumps for all 
values k = k,m/2 and the fact that gaps of finite strength affect the coefficient multi- 
plying k 2. Before proceeding to determine the diffusion constant, we first demons- 
trate that within the perturbative approximation, the long-time limit is linear in t. As 
mentioned earlier since the gaps occur at k = k,,,/2 we evaluate the eigenvalues by 
assuming all other k,~/2 do not interfere (for details see Valsakumar and 
Ananthakrishna 1987). Within this approximation we have 
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a 2 as a function of number  of steps for a specific choice of site with 5000 histories. 

( d / d 0  G = R G, 

Gr=(G (k.m/2,  t), G (- k.m/2, t)) 

c o s  ( k . m / 2 ) -  1 2isin(k.m/2) Z.m 1) 

- 2i  s i n  (k.m/2)  X*m COS (k .~ /2 )  - 
\ 

(7) 
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The two eigenvalues are given by 

2 :L = (cos k . . , /2 -  1)-4- 2 tZ.,.I sin k,,./2. 

By calculating the eigen functions, we obtain 

G(_k, , , /2 ,  t)=½[exp(2+t)+ - Z.,. exp (2 t)] - ~-~}~ [exp (2 + t ) -  exp (2- t)]. 

(8) 

Here we have used the origin to be the initial starting point. It can be shown that 

(1 sin2q~"~ 
Iz,,,I sin k.m/2 = sin k.~/2 - 2 W~) 

since Isin q~..I = Isin k.m/21, this term has a k 3 dependence (for a particular choice of n, 
m; k . , , /2~z- '+z  and q~.,,~2/k.,, then this term has a k 4 dependence). Thus the 
leading contribution for the long-time behaviour comes from the k 2 term and is 
linear in t. Further the diffusion constant in this approximation is that of a conven- 
tional random walk. Since the numerical results suggest that this is an artifact of the 
approximation, we outline an argument to obtain an approximate expression for the 
diffusion constant. 
• We note that the spectrum is a point spectrum and there is a dense set of gaps. The 

bigger gaps have an effect of depressing the k ~ 0  part of the spectrum (in reference to 
the case W~ = ~ = ~ = 1) although it retains the k 2 dependence, which means that 
the coefficient of the k 2 term is altered. This comes about because all modes interact 
due to the self-similar nature of the wave vectors. The magnitude of the gap is 

AZ =4  sin 2 k,m/2 II - 2 Wpl (sin qb.,./4~,m z2) (9) 

This is identical in form with the vibrational problem (see Valsakumar and 
Ananthakrishna 1987), the first term corresponds to the spectrum of the conventional 
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chain and the second to the jump at each k,,,/2. The last factor clearly goes to zero as 
k ~0. It is worth noting that if we leave out the jump part, the spectrum has to be a 
k 2 dependence. The total contribution (for any Wp) from the dominant gaps gives a 
factor of approximately 0.5. Thus the contribution for modification of the spectrum 
is 2 t sin 2 k,~/2" [ 1 - 2  I,V~I. (It should be emphasized that the prefactor of 0"5 is only an 
estimate). Thus 

D _ [ 1 - l l - 2 W a [  ]. 

This gives a linear change of D as a function of ~ in contrast to the numerical result. 
This is the best that could be expected on the basis of a pertubative approach and is 
expected to hold only for small deviation of ~ (around 0.5). The above arguments 
are rather heuristic and should be taken with caution. However a better approach 
would be to use a renormalization group approach where the scale similarity would 
lead to the renormalization of the jump probabilities. Such an approach should be 
expected to give the correct form of D(W~). 
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