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Elementary concepts in chaos and turbulence 
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Abstract. The phenomenology of aperiodic or chaotic behaviour is descril~*~l with reference 
to simple theoretical models and experiments. A brief description is given of the current 
understanding of how irregular dynamical motions can arise. 
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1. Introduction 

In the past few years, an intense effort has been devoted towards the detailed study of 
intrinsically random phenomena. Random phenomena are plentiful; in this talk, I will 
attempt to give a brief introduction to the rather simple concepts that at present 
underlie a basic understanding of chaos or irregularity, and the onset of turbulence. 
Many of the ideas are novel and interesting; whether or not these concepts are directly 
applicable in the context of mechanical behaviour as discussed in this Meeting is not 
entirely clear, but that is more a problem of application. This talk will be primarily 
phenomenological and qualitative without much emphasis on the mathematics 
(although much of the insight in this field really comes from the mathematics). Rather 
than give explicit references through the text, I prefer to list in the bibliography several 
articles that discuss these concepts in greater detail. 

It is of interest to examine families of (nonlinear) systems rather than particular cases, 
as this type of study is apt to reveal more of the general behaviour. Typically, such 
systems can be parametrized by some physical variable such as temperature, pressure, 
applied voltage, etc. In many situations, the following general pattern has been seen to 
occur as a function of the relevant control parameter: 

transitional erratic 
Smooth behaviour > range > behaviour 

periodic > ? - - - - ~  aperiodic 

A few examples are given below. 
(1) Heart beats are possibly the most familiar instance of regular, periodic behaviour. 
As a function of applied stress (for example during physical exertion), we can easily 
observe the period changing as the heart beats faster. When this exertion is now coupled 
with oxygen availability, when one is climbing a mountain, say, the period can change 
drastically, and in fact may become quite erratic. This has unfortunate physiological 
effects (death is likely), and emphasises the importance of a transition from regular to 
irregular behaviour under the variation of a control parameter. 
(2) A less familiar example occurs in the study of animal populations. This assumes 
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importance in livestock farming or fishery management, where it is necessary to know 
the behaviour of the population as a function of time, typically from generation to 
generation. One can in fact write fairly simple equations (of the difference, differential, 
or differential-delay type) to describe the population, where the control parameters are 
the food supply and the reproductive ability. These simple equations can give rise to 
totally chaotic behaviour for some values of these parameters. 
(3) An example that I will discuss later on has to do with the onset o f  turbulence. In the 
classic Rayl6igh-Benard experiment, when a liquid is heated, convective motion is 
established within the liquid. As the rate of heating is increased, the motion can become 
quite irregular, leading eventually to the full scale turbulence which is seen in the boiling 
liquid. 
(4) It is possible that in a material under stress, this kind ofbehaviour is present as well, 
as may be deduced from the equations that model serrated yielding, for some values of 
the applied strain. 

There are several more examples that one could cite. What is important, however, is 
that chaos is a dynamical phenomenon, and is abundant, in that it occurs frequently in 
nonlinear situations. (Nonlinearity of the dynamical system is a necessary condition for 
chaos, but is not a sufficient one.) 

2. Dynamics 

We define a dynamical system in terms of one independent variable, such as time, t, one 
or more dependent variables, x~ (t), and an external (control) parameter,/~. One requires 
a prescription to determine the evolution of the dependent variables. This is done via a 
system of differential equations, 

d 
~-[ xi (t) = F u (x (t)), (1) 

or difference equations, 

xi ( j  + 1) = F u (x (j)). (2) 

The indexj plays the role of a discrete time in the latter case. The parametric dependence 
is contained in Fz. Given these and a set of initial conditions, it is straightforward 
to obtain the time evolution of the dependent variables. This defines an orbit, and it is 
the behaviour of these orbits as a function of time that describes the dynamics. 
It is customary to examine the dynamics in the phase space of the variables 
x~(t), i = 1 , 2 . . .  

We can simply define regular behaviour as motion, x; (t), which is predictable. That is, 
the dynamical variables are periodic functions of time, or combinations of periodic 
functions, i.e., quasiperiodic functions. Irregular or chaotic motion is, in contrast, 
unpredictable, and therefore is given by an aperiodic function (equivalently, of infinite 
period). It is important to emphasize that these motions are discussed entirely in terms 
of deterministic evolution via (1) or (2). Chaotic motions arise independent of random 
noise or fluctuations. In fact, it is customary to label such intrinsic erratic behaviour as 
self-generated chaos. 

The notions of regular and chaotic motion can be quantified in several ways. A direct 
and rather obvious means is through the spectral or Fourier analysis of the orbits. 
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Regular motion leads naturally to a discrete Fourier spectrum, since the motion is 
either periodic or quasiperiodic. The spectrum for chaotic motion must necessarily be 
continuous owing to the aperiodicity (i.e., any and all frequencies--in particular, zero- 
frequency). Another means of distinction is based on the Liapunov instability of orbits. 
The euclidean distance between regular orbits can grow linearly; whereas, between 
chaotic orbits, it grows exponentially. It is also possible to examine the orbits 
themselves, to get an idea of how they develop in phase space. When there are n 
dependent variables, corresponding to m degrees of freedom, the phase space is of 
dimension n (xi(t); i = 1, 2 . . . . .  n). Examining the motion in this n-dimensional space 
is a difficult task. One can, however, essentially accomplish this by examining the 
Poincare surface-of-section. This works best when the number of degrees of freedom is 
small, m = 2 or 3. To construct a surface of section, one chooses a particular plane in the 
phase space, and locates the point of intersection each time the orbit passes through this 
plane. Ifa given orbit is examined for a sufficiently long time, there are several points of 
intersection, and these give an idea of the geometry of the orbit. For regular motions, 
the points of the Poincare section lie on smooth curves, whereas for chaotic motions, 
these points are scattered apparently randomly in the plane (independent of which 
particular plane is chosen). 

In discussing dynamical systems, it is useful to distinguish between conservative 
systems (where the volume of phase space is constant in time) and non conservative 
systems (where this volume changes with time). The behaviour is somewhat different in 
the two cases. In most physical situations one encounters dissipative, nonconservative 
systems, owing to the presence of frictional forces, and in that sense these systems are 
more important. It is however necessary for completeness to describe in brief the 
behaviour of conservative systems. 

2.1 Conservative (Hamiltonian) systems 

The most common examples of conservative systems are Hamiltonian systems, wherein 
one can define a Hamiltonian function, H (x). As general dynamical systems, these have 
n = 2m dependent variables for m degrees of freedom. Thus, the phase space is of 
dimension 2m; m of these variables are 'coordinates', and m are their conjugate 
'momenta'. Evolution is governed by Hamilton's equations. (In the discrete case, the 
requirement of constant phase space volume is replaced by the condition that the 
Jacobian of the transformation in (2) have the value _ 1). One can further separate such 
systems into two classes: integral systems and nonintegral systems. In the former class, 
it is possible to make a canonical transformation such that H (x) is given in terms of m 
(in general, new) 'momentum' variables alone. These are constants of the motion, which 
is then constrained to lie on well-defined geometrical objects, namely, m-dimensional 
tori in the phase space of dimension 2m. Thus the motion is always regular. We can 
regard nonintegrable Hamiltonians as arising from integrable ones by the addition of 
perturbation terms (depending on/~), such that H can no longer be expressed as a 
function of m momentum-like variables alone. There is then no guarantee that the 
motion will lie on m-dimensional tori. The powerful KAM theorem applies in such cases. 
Loosely speaking, this theorem states that, depending on the magnitude of the 
perturbation, some of the tori that exist in the integrable case get distorted, and some of 
them are destroyed. When the tori are merely distorted, the motion still remains 
regular; but when they are destroyed, the orbits are free to wander over all of phase 
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space, and can therefore become highly irregular and chaotic. The phenomenology of 
Hamiltonian chaos is in fact extremely bizzare and involved; this erratic behaviour 
basically arises from the complicated interactions between internal resonances. The 
foregoing is a cursory description of the bare essentials of the matter. As a simple 
example, consider the discrete map 

xi+ a = # x i  - (Yi - x2)(1 - #),/2, (3) 

Yi+l = xi(l  -/a) 1:2 + (Yi-  x/2)/z. (4) 

This roughly models the Poincar6 surface of section of an m = 2 degree of freedom 
Hamiltonian system. Orbits are constructed by iterating points in the xy plane under 
the above transformations. Depending on where one starts, successive points in figure 1 
can lie on a smooth curve (A) or on a set of smooth curves (B)--these correspond to 
regular motion on tori; or else the points can be scattered all over the plane (C)--this is 
a chaotic orbit and is not confined to any simple geometrical object. In general, the 
motion can be extremely complicated. This is both typical, in the sense that most 
nonlinear Hamiltonian systems are likely to be nonintegrable, and pathological, in the 
sense that for any nonzero value of/z, a nonintegrable Hamiltonian will exhibit s o m e  

chaotic motions. 

2.2 D i s s i p a t i v e  s y s t e m s  

As already mentioned, dissipative systems are more common, and thus more pertinent. 
A typical example is provided by the forced-beam problem. A beam of length b is 
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Figure 1. Orbits in the xy plane induced by the discrete transformation of equations (3)-(4). 
A and B are examples of regular motion, while the set of points C is typical of the Poincar~ 
section of a chaotic orbit. 
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pinned at two ends, separated by distance 1. When I is less than the beam length, the 
beam settles into one of the two symmetric equilibrium configurations. A sinusoidal 
force is applied at the ends, and the beam oscillates about the equilibrium position. As 
the excitation increases, however, the rod begins to snap back and forth between the 
two equilibria. If w(x,  t) is the lateral displacement, 

w(x, t) = ~(t)sin (nx), (5) 

For small forcing amplitudes, ~ (t) is a periodic function; but as the forcing amplitude 
increases, ~(t) can become quite chaotic. The problem can be properly formulated 
mathematically, and simplified to a more familiar problem, the Duffing equation. The 
latter describes a simple nonlinear forced oscillator with frictional damping, 

2 + ax + x + fix 3 = f c o s  (cot). (6) 

This example is sufficient to illustrate much of the phenomenology. When 
= / / =  f = 0, (6) corresponds to the equation of motion of  a simple harmonic 

oscillator of  unit mass and frequency. The motion in phase space is extremely simple: a 
circle in the xx plane, given by the parametric equations, 

x(t)  = A cos (cot + ~b); x(t) = - A sin (wt + q~). (7) 

The motion is trivially regular. If damping is now introduced, keeping fl = f -  0, one 
has damped harmonic oscillations; the motion now consists of orbits that spiral 
exponentially into a sink at x = x = 0. When forcing is also included, one has a limit 
cycle behaviour, i.e., orbits converge asymptotically onto a limiting structure in the 
phase plane, and the motion is periodic on this limit cycle. 

The sink and the limit cycle are examples of  simple attractors. When nonlinearity is 
included in the equation of  motion, it is possible to have more complicated attractors-- 
in particular, stranoe, or chaotic, aperiodic attractors. One early example of such an 
attractor was found by Lorenz in a 3-mode truncation of  the Navier-Stokes equation 

= l O ( y -  x), 

j ,  = l a X  - y - xz, 

= x y  - 8z/3. 

The strange attractor (SA) that occurs in this system is shown in perspective in figure 2. 
The orbit spends random amounts of  time on the two distinct portions of  the attractor. 

SA' S are crucial in one picture of the onset of  chaos and turbulence, the Ruelle-Takens 
model. Here chaos is presumed to occur by the creation of sA's, and the mechanism is as 
follows. Solutions to (1) are studied. For small #, some simple periodic motion is 
present; as/~ increases, (Hopf) bifurcations occur; the motion is still regular, but now on 
m-dimensional tori, where m > 1. When two such bifurcations have occurred, then it 
can be (mathematically) proven that any small perturbation suffices to create a SA, and 
hence chaos. 

Currently, there exist several such scenarios for the onset of chaos and turbulence, 
each applicable in different circumstances. In the so-called Feigenbaum picture, we 
consider systems described by (1) or (2). As a function of  the parameter/~, the following 
behaviour pattern occurs. For # < #0, there is some kind of  a simple sink. At #o, a 
bifurcation takes place and an orbit of  period • becomes stable and attracting. 
(Technically, this is through a "pitchfork" bifurcation). As # is increased beyond a certain 
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Figure 2. The strange attractor in the Lorenz system, equation (8), for # = 28. The attractor 
consists of two almost planar portions, and the orbit wanders chaotically from one side to the 
other. 

value #t,  the period - z  orbit loses stability, but one of  period 23 is born which is now 
stable and attracting. At a higher value #2 another bifurcation takes place, with the 
period-2z orbit losing stability while a period-4T orbit becomes stable. This process 
repeats itself: at #,, a period-2"z orbit becomes stable and attracting while the period- 
2"- tz  orbit loses stability. In the limit, one has a 2~z-period orbit, i.e., an orbit of  
infinite period, or chaos. The interesting thing is that #~ is finite--the period-doubling 
cascade occurs quite rapidly, and furthermore, the rate of convergence of  the 
bifurcation points, 

6, = #" - # , - i  (9) 
#. + I - #. 

logarithmically approaches t$ = 4.669201609. . .  as n ~ ~ .  The most surprising fact is 
that the number t$ is universal for a large general class of  F~. The precise form of F~ does 
not matter (within certain restrictions). Wherever the period-doubling route to chaos is 
found, the number t$ that one computes from measurement is identical to that found by 
Feigenbaum (i.e., 4 .669. . . ) .  Historically, this number was discovered in a study of the 
discrete one-humped map of the unit interval known as the logistic equation, namely, 

x( j+ 1) = #x( / ) [1  - x ( j ) ] ,  

0~<x~< 1, 0~<# ~<4. (10) 

(In fact, there are several other universal constants that can be found within such a 
picture.) The period-doubling route to chaos has been seen to occur in a wide variety of  
cases--in abstract maps such as (10), in differential equations such as (8), in a variety of  
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theoretical experiments modelling chemical reaction kinetics, in forced oscillator 
problems, in a seven-mode truncation of the Navier-Stokes equation, and even in the 
equations that model repeated yielding in mechanical behaviour. Most crucially, 
though, a number of physical experiments have also confirmed this picture. The 
Rayleigh-B6nard flow problem mentioned earlier is one such. In this experiment, liquid 
helium is heated at around 4 K, and the temperature at a point within the cell is 
monitored as a function of time. The Rayleigh number, R, plays the role of the 
parameter y. For low R, convective rolls are formed in the experimental cell; the motion 
is periodic. As the temperature is raised, the motion begins to become turbulent. The 
Fourier transform of the temperature as a function of the time clearly shows the 
existence of a basic frequency, f, and the subharmonic bifurcations, which give rise to 
peaks at f/2, f/4, f/8, f !  16, etc. (see figure 3). The Feigenbaum constant computed from 
this experiment turns out to be about 4.8, amply confirming the general theory. 

It must also be mentioned that the Rayteigh-B~nard experiment prepared differently 
displays the Ruelle-Takens behaviour as well. There is yet another common mechan- 
ism, intermittency, through which chaos can occur, via "tangent" bifurcations. Prior to 
the onset of full-scale chaotic behaviour, there are long periods of time when the motion 
is perfectly regular, interspersed with short bursts of erraticity. This route too can be 
observed experimentally. 

In dissipative systems, chaos comes about in a manner different from that in 
conservative systems. Essential ingredients are bifurcations and attractors. One can 
have either period-doubling bifurcations and a periodic attractor in the Feigenbaum 
scenario (thus only one independent frequency), or bifurcations from a period orbit to 
tori, followed by a strange attractor in the Ruelle-Takens picture (thus at most three 
independent frequencies). 

3. Summary 

This talk has only briefly touched upon the basic phenomenology of irregular motion. 
Much of the interest in nonlinear dynamics arises from the existence of a large 
component of the unexpected and the counterintuitive. I have tried to outline the 
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various paths or routes to chaos; unavoidably, there are gaps in this short presentation. 
Although much progress has been made, there are still several open questions. For 

example, there is no minimal (or maximal) degree of  complexity necessary to ensure 
chaos--very nonlinear systems can be integrable, while even the simplest (cubic) 
nonlinearity can induce chaos. And at the microscopic level, which may or may not be of 
interest here, quantum effects occur, and there is no clear understanding of how this can 
modify classical chaos. 

When it does occur, chaos can have important consequences. For one thing, it 
becomes possible to apply statistical methods to advantage, if the behaviour is 
sufficiently random-like. On the other hand, chaos may be an undesirable feature if one 
wishes to remain in the region of the precisely predictable this situation is common, 
for example, in particle storage rings where particle losses occur via erratic orbits: It is 
then essential to minimise or totally avoid chaos. The very ubiquity of chaos makes it 
necessary to examine dynamical processes in greater detail, whatever the context--this 
can well include mechanical behaviour. 
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Discussion 

G Ananthakrishna: Why is it often said that Landau's theory does not give a correct 
description of turbulence? 

R Ramaswamy: The trouble with the Landau picture of turbulence is that as you vary a 
particular parameter, you have a series of bifurcations to the wrong geometrical object. 
These are in a certain sense bifurcations from a periodic orbit to a toroid, and thence a 
sequence of toroids. A limiting strange attractor does not appear. 

G Ananthakrishna: Which route to the turbulent state is followed in the Rayleigh- 
Benard case? 

Ramaswamy: It has been shown that all 3 routes may be followed. 

G Ananthakrishna: Is there any algorithm to get the Poincare map for multi- 
dimensional systems? 

Ramaswamy: It is a difficult process. 

S R Shenoy: Can one make a statement about the minimum order of the differential 
equations and of the nonlinearity in them in order to get chaos? 

Ramaswamy: This is difficult. We do not even have a clear way of predicting whether a 
system is going to be integrable or not. A minimum requirement for chaos is of course 
nonlinearity, but it is not easy to make a more exact statement of general applicability. 

K R Rao: Does the central peak in a second order phase transition have anything to do 
with chaos? 

Ramaswamy: There is no analogy at all between the onset of chaos/turbulence with 
any kind of phase transition. 

M Youssuff: How does one develop a probabilistic description of the chaotic state? 

Ramaswamy: One of the reasons for studying chaos is to determine when ergodic 
theory is valid. Clearly, at the very least, chaos is needed for ergodicity to occur. 


