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Abstract. In the normal study of matter, the ordered state is considered first, followed 
by the addition of minor disorder or fluctuations, for instance, studying crystalline 
solids with some quasiparticle excitations like phonons and magnons. The discovery 
ef the universality of critical point phenomena seems to provide a chance to study a 
regime dominated by the fluctuations. The Onsager solution of the two-dimensional 
Ising model, exhibiting a logarithmic singularity in heat capacity, and the Fairbank- 
Buckingham-Kellers experiments, showing such a singularity in the heat capacity near 
the superfluid transition of liquid ~He, are landmarks in this topic. The recent 
renormalization group theory shows a way of studying the patterns among the fluctu- 
ations. The dependence of the critical exponents upon spatial and spin dimensiona- 
lities, the existence of universal amplitude ratios and the other aspects of critical 
phenomena are briefly discussed. 

Keywords. Critical phenomena; specific heats; fluctuations; renormalization Stoup 
theory. 

1. Introduction 

The theories of materials start usually with a perfect crystalline arrangement of the 
particles. This regular arrangement is then disturbed by situations like the thermal 
vibrations of the particles artd the presence of vacancies or dislocations, so that one 
can study the behaviour of real materials by starting from the framework of a per- 
fectly ordered solid. In order to make the study feasible, one also assumes that the 
defects or disturbauces are small and that they alter the basic structure only in a 
minor way. The situation is nearly the same when one considers the general frame- 
work of say the quantum theory. The ground state is the starting point and one 
calculates the effects of perturbations upon the ground state Hamiltonian. The 
calculation is simple if the disturbance is weak. The perturbation theory is success- 
ful for the cases of weak disturbances or small fluctuations. 

Thus in most situations, one starts with an ordered state and then studies the 
effects of a small perturbation or disorder. The study is feasible and successful 
only if the perturbations or fluctuations are small. One does not want a case in 
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Which the fluctuations are large and indeed one does not even know how to handle 
a ease in which the fluctuations and perturbations are large. 

In the last few years, it appears that one has found a way to handle some fluctua- 
tion-dominated situations so that one is beginning to see patterns even in chaos and 
disorder. These patterns or symmetries are naturally of a special kind. However 
concepts like invariance or scaling are applicable as equally to the new situations as 
to the more traditional older examples. 

2. Critical point phenomena: A fluctuation-dominated region 

In order to study the patterns and properties of fluctuations, one must first of all 
look for the phenomena in which they are dominant. A simple calculation in 
statistical mechanics (Hill 1960; Morse 1969; Gopal 1974) shows that the mean 
square value of the fluctuations in say the density p is given by 

(ap)2 = p2 kT  XT/V, (1) 

where V is the volume of the sample at a temperature T and X r  =" - V-I(~V/~P)T 
is the isothermal compressibility. Under ordinary conditions, the fluctuations are 

of the order of (~p)2/p2~ I/N where N is the number of particles in the system. 
Since N ~ 1028/m s, the fluctuations are completely negligible. Thus the idea of 
starting with the average or ground state values and treating the fluctuations as small 
perturbations works very well. 

A situation in which the compressibility Xr  becomes very large is indeed known 
for more than a hundred years. The observation of the critical temperature of a 
gas like carbondioxide by Andrews and the development of the Van der Waals 
equation of state, providing the continuity of the liquid and the gas states, have 
become elementary textbook topics. The isotherms of a gas at temperatures T 
much greater than the critical temperature has a simple hyperbolic shape (figure la). 
At temperatures below T c, the matter is in the liquid phase at high densities, in a 
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Figure 1. (a) I so thenm of  a liquid + gas system in the critical region. The 
coexistence curve boundary is shown by a broken line. 0b) Spontaneous magne- 
tization M 8 of a ferromagnet near the Curie temperature. Note the broken line 
showing up or down magnetization so that  a rotation of the curve by 90 ° makes it 
similar to the coexistence curve of  a liquid + gas system. 
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vapour phase at low densities and in a coexisting phase at intermediate densities. 
At the critical temperature To, the compressibility P-~(~P/3P)r becomes infinitely 
large and from equation (1), one should expect very large fluctuations. The mani- 
festation of these large fluctuations in the form of critical opalescence - -  (scattering 
of the light falling on the system tosuch an extent that the medium appears to glim- 
mer or opalesce) - -  was known at the turn of the last century. The explanation of 
the phenomenon of opalescence as the scattering of light from the density fluctuations 
was advanced by Einstein and by Smoluchowski about seventy years ago. Since 
that time light scatteri~g has become a convenient tool to study the fluctuations in a 
system (Benedek 1968; Gopal 1980). 

The unusual opportunity presented by a large increase in fluctuations was recog- 
nized only in recent times. In the fifties and sixties, when careful measurements in 
the critical region were performed, certain interesting features became clear. For 
example when the density difference p~. - P c  between the coexisting liquid and gas 
phases was expressed as a function of the temperature difference T~--T near the critical 
temperature, the function assumed a simple power law form 

(PL - Pc)  -- s ( t o -  r )  (2) 

with fl ~ 0.34 for a number of gases. Similarly the specific heat at constant volume 
became very large as 

Cv "" I Tc - T I -a ,  (3) 

with a~ ~ 0.1, where the symbolic way of writing (3) denotes the asymptotic functional 
form as I T -  T~ I --+ 0. The compressibility of the fluid in the critical region had a 
divergence 

X r ~  I T - T ~ I - Y ,  (4) 

with ~/ ~ 1.3. Other properties also showed such simple power law behaviour. 
The situation became even more interesting when the properties of ferromagnets 

were studied near the Curie temperature. It is known, for example, that the simple 
thermodynamic properties of magnetic systems are formally obtained by the equiva- 
lence M ~ p, H ~ P in the equations. Thus one can calculate the fluctuations 
in magnetization using the formal analog of equation (1). When the specific heats 
of terromagnets were measured near To, it was found that 

cj, ,., I T- Tc I - °, (5) 

with the simple power law exponent a having the same value ~ 0.1 as with (3). The 
spontaneous magnetization Ms went to zero at T c with a functional form 

M, ~ (To - (6) 

with fl having the same value ,~, 0.34 as in (2). The magnetic susceptibility, which is 
the analog of the compressibility had the same value 1.3 for the exponent "Y. In 
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other words the critical exponents appeared universal, independent of the chemical 
nature of the interparticle forces, Van der Walls type or hydrogen-bonded type or 
exchange interaction or any other type (figure 2). This universality or the independence 
from the type of interatomic forces immediately suggested that the behaviour 
must be the result of very general causes, the results of large scale fluctuations 
dominating over the features specific to magnetic interactions or cohesive forces. 

More detailed studies revealed yet another facet of the critical point phenomena, 
namely, the scaling of the propertie~;. A property like the specific heat, when plotted 
in terms of reduced variables C/NR against TIT c, gave the same curve for all the 
substances. Thus by suitable choice of the reduced variables, a property of' all the 
substances fell on a single curve, depending of course on this particular property 
(Stanley 1971; Green 1971). 

While the universality feature showed that the critical point phenomena had the 
origins in the large scale fluctuations, it also became clear that these fluctuations must 
have some pattern or symmetry or structure to account for the simple power law 
and the scaling behaviour of the properties. 

T c "T 

~' ^ ; I  X M~B ITc-TI ~ 
 'i'l N \ B "0.34 

6 1  \ 
T c ~T 

- 1.3 

m ~'r" ~1¢~ / . ~ 

T c n,-  

Main fealures: 
(i) Simple power lows 
(ii) Universality 
(iii) Scoling 

Figure 2. Universality of critical phenomena. The heat capacity, the order para- 
meter and the response function show the same power law exponents for liquid+gas 
systems, ferromagnets, antiferromagnets, order-disorder transitions of alloys near 
their critical temperature. 
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3. Behaviour of heat capacity 

The behaviour ot heat capacity has a special place in the study of critical phenomena. 
A simple model of a system showing a cooperative transition is the so-called Ising 

model. Here spins ~ are placed on the lattice sites and interact only with nearcst 
neighbours with a Hamiltonian 

H~ = - 2 S  ~ . Sj~. (7) 

In other words only the z-component of the interaction term is retained in the full 
Heisenberg exchange interaction 

For spirt ½ particles~ the Ising interaction has only two values, adjacent spins 
parallel or antiparallel. Such a model is a simplification of the situation in a ferro- 
magnet. The order-disorder transition, in which adjacent sites can be occupied by 
correct or incorrect atom pairs, and a liquid + gas model, in which a neighbouring 
site may be occupied or vacant, are the other situations which can be approximated 
by the lsing model. 

The approximate treatment of the Ising model by Bragg-Williams, Bethe and others 
had indicated a phase transition in which the heat capacity was finite but disconti- 
nuous across the transition, a situation called a thermodynamic second-order phase 
transition. The subject took a new turn in 1944 when Onsager managed to solve the 
two-dimensional zero magnetic field case exactly (Onsager 1944). This statistical 
mechanical solution is even today a remarkable feat of mathematical analysis and 
even the so-caUed greatly simplified versions of the analysis are far beyond the 
understanding capability of average physicists and chemists (McCoy and Wu 1973). 
The Onsager solution showed that the two-dimensional Ising model had a symmetri- 
cal logarithmic infinity in heat capacity at To. Thus 

CH= o ~ A l n l  T - T  c l  + . . . .  (9) 

where the other terms are nonsingular terms small in comparison. The simplicity 
of the model and the unexpected behaviour of the solution has prompted many 
investigations of the full three-dimensional Ising model. Unfortunately even today 
it has not been solved exactly and remains one of the foremost challenges in mathe- 
matical physics. 

The experimental study of the heat capacity near the critical temperature took a 
great leap forward when in 1956 Buckingham, Fairbank and Kellers studied liquid 
4He near its lambda-transition at 2.16 K (Buckingham and Fairbank 1961). The 
temperature could be controlled to a microdegree and over an extended range of 
temperature the specific heat fitted the singularity 

Cv mA+ + Bln  [ T - T ~ [ ,  (10) 
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Figure 3. Heat capacity of liquid tHe near the ?,-transition, based on the experi- 
rnents of Buckingham, Fairbank and Kellers. The portion shown by the thin vertical 
line in the (a) portion with X-axis in degrees, is expanded to the (b) portion 
with the X-axis in millidegrees. The vertical line in this figure is expanded to the 
(c) portioa with the X-axis in microdegrees. The broken line is the theoretical fit 
to the data. 

as shown in figure 3. More recent investigations have gone to I T - T x I ~ 10 - s  K 
and a functional form 

C p ~ D ±  + E .  [ T -  T 1-°"°2, (11) 

seems to fit the data better (Ahlers 1980). For practical purposes the two forms are 
indistinguishable since 

Lt [ ( t - a - 1 ) / 0 ~ ]  --- In 1 t l .  
a--+ 0 

Since these pioneering experiments on liquid 4He, the topic of specific heats near 
phase transitions has become an important and fruitful area of work (Kumar et al 
1981). 

4. Renormalization group calculation of critical exponents and amplitudes 

An understanding of the role of fluctuations in determining the critical phenomena 
has come in the last 10 years due to the ingenious application of the renormalization 
group theory by Wilson and others (Wilson and Kogut 1974, Ma 1976). As men- 
tioned earlier the interatomic length scale becomes irrelevant when the correlation 
lengths become very large. The scale invariance is treated in an ingenious way 
to tackle the problem involving the fluctuations of about 1023 particles. The 
shortest wavelengtk fluctuations are eliminated in such a way that the resulting 
problem, involving a fewer degrees of freedom, looks similar in form to the original 
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Figure 4. Concept of scale invariance. The properties of a block of large number 
of spins are similar to the scaled properties of a block of smaller number of spins, being 
dependent only on the scaling factor n and not on the interatomic scale of length a. 

one but with a different set of coupling constants. This process is repeated until 
finally there is left a problem with just one degree of freedom whose features could be 
studied by more conventional methods. In other words, the initial Hamiltonian is 
transformed into a sequence of effective Hamiltonians by successively eliminating 
the fluctuations starting with one having shortest wavelength. The complicated N 
particle (N of the order of 1033) problem in a known simple Hasniltonian is trans- 
formed into a one-particle problem with a transformed Hamiltonian (compare 
figure 4). These transformations belong to a mathematical group called the renor- 
malization group. 

Under the repeated transformations, the Hamiltonian moves along a line in the 
configuration space. After the small scale fluctuations are integrated out, the Hamil- 
tonian does not move and is said to have reached a fixed point of the transformation. 
This is so because the correlation length is infinite at T~ and will remain so for finite 
changes of scale. The eigenvalues of the transformation about the fixed point give 
the critical exponents. Thus the exponents come out to be independent of the initial 
couplings and depend only upon the universal properties of the fixed point. Any 
such mathematical technique is productive only if the final results are tractable. 
Wilson showed that this is indeed so and calculated the exponents as an asymptotic 
series. 

Unfortunately even the simplest details of the renormalization group theery 
(Ma 1976; Maris and Kadanoff 1978) are still more complex than what the average 
experimental scientist can follow. Under these circumstances it is better to quote 
the results than attempt an explanation. The RG theory shows that the critical 
exponents depend upon the spatial dimensionality d of the system in a major way and 
upon the spin dimensionality n in a minor way. The Ising system (equation 7) 
has n = 1 since only the Z component is allowed. The Heisenberg interaction has 
n -- 3; liquid helium-4 in its superfluid phase has a complex wave function and belongs 
to the n = 2 category. The specific heat exponent o~ is given by an equation 

( n - 4 )  n 3 + 32n z + l16n + 112 
c~,= 2(n + 8) (4 - d) - 4(n + 8) 3 . . . .  (4 - d)  z + . . .  (12) 
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For the three dimensional case d=3 ,  the values are -0.10, -0 .02 and+0.08 for 
n = 3, 2, 1 respectively. Note that a positive value of 0~ means an infinitely large value 
of the specific heat at T c , while a negative value means a cusp at To. 

The best experimental value of the exponent o~ in the case of liquid helium-4 near 
its superfluid transition was already mentioned as - 0.02 +_0.01 and this compares very 
well with the theoretical value for d=  3, n = 2 mentioned above. The d = 3, n = 1 
systems are the /s ing magnets, liquid + gas critical systems and binary liquids near 
their critical solution temperature. The recent experimental values cluster round 
0.10-1-0.04 which is again in good agreement. The Heisenberg magnet systems have 
also been studied carefully and yield ct-- -0 .12+0.05 .  Thus one has remarkable 
explanation of the experiments. 

The RO theory is able to further study the pattern of fluctuations and the correla- 
tions among them. In particular if the singular part of the specific heat above T e 
and below T, are written a ~ 

C v  = A+ I T - T ,  l - a  f o r T >  T,,  

• A - I  Tc - TI  - a '  for T <  To, 

(13 a) 

(13 b) 

the RG theory shows that 

,= 0~" and 

n ~ 13n 4 + 74n s + 708n 2 + 2264n + 6400 
A + / A - = 2 " "  4 I l + ( 4 - d ) + ( a - d )  ~ 

4 - n 3 ( 5 n  + 22) 
+ 2(n+8) ~(2)- (n+Sy ~(3)+ 

9 ( 4 - n )  2.349)} ] ( 1 4 )  
4(n + 8) 8( -  "'" 

In other words the amplitudes of the anomalies above and below T c bear a universal 
ratio. For d = 3, the calculated values are 1.24, 0.88 and 0.48 for n = 3, 2, 1 respec- 
tively. The experimental values are respectively 1.3 + 0.1, 0.9 + 0.1, 0.5 +_0.1 for the 
three cases, again showing broad agreement (Kumar et a! t981). 

In addition to these patterns among the fluctuations, yielding the values of the 
exponents and the amplitude ratios, the RG theory goes further to calculate the finer 
details also. For example, it is shown that simple equations like (2), (3), (4), (5), 
(6), (13) are valid only in the asymptotic limit of I T -  T c I ~0 .  For slightly larger 
values of I T -  T, I, one can write the higher order term of equation (13) as 

- - a  - - a + ~  

C v  = A I T -  T ,  I + B I T - T ,  I + . . .  (15) 

and 2X the correction to asymptotic exponent has a universal value of nearly 0.5. 
One can get the ratio of the correction amplitudes above and below T c. These 
universal values arise because of the presence of well-defined patterns among the 
fluctuations. 

The fluctuations also show spatial and temporal correlations as T c is approached. 
These correlations can be studied using methods like the laser light scattering. 
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Certa in  averages o f  the cor re la t ions  are  re la ted to  the t r anspo r t  coefficients l ike 
viscosi ty,  dif fusion or  electr ical  resist ivi ty ~nd these proper t ies  a re  also the objects  
o f  intensive s tudy in the last  few years  (Hohenbe rg  and Ha lpe r in  1977; G inzburg  
et al 1980). 
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