• Issue front cover thumbnail

      Volume 38, Issue 2

      June 2017

    • Gulmarg, Kashmir, India: Potential Site for Optical Astronomical Observations

      Ajaz Ahmad Dar Manzoor A. Malik

      More Details Abstract Fulltext PDF

      The site characteristics of Gulmarg, Kashmir at an altitude of about 2743.2 m above sea level is based on analysis of meteorological conditions, cloud cover, temperature, wind speed, wind direction, relative humidity and atmospheric pressure, etc. Analysis and characterization of meteorological conditions suggest that Gulmarg, Kashmir is a potential site for carrying out photometric as well as spectroscopic observations of celestial objects.

    • Metallicity of Sun-like G-stars that have Exoplanets

      Shashanka R. Gurumath K. M. Hiremath V. Ramasubramanian

      More Details Abstract Fulltext PDF

      By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, Sun′s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (≥1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of ∼0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.

    • Spectroscopic Variability of Supergiant Star HD14134, B3Ia

      Y. M. Y. M. Maharramov

      More Details Abstract Fulltext PDF

      Profile variations in the ${H}\alpha$ and ${H}\beta$ lines in the spectra of the star HD14134 are investigated using observations carried out in 2013–2014 and 2016 with the 2-m telescope at the Shamakhy Astrophysical Observatory. The absorption and emission components of the ${H}\alpha$ line are found to disappear on some observational days, and two of the spectrograms exhibit inverse P-Cyg profile of ${H}\alpha$. It was revealed that when the ${H}\alpha$ line disappeared or an inversion of the P-Cyg-type profile is observed in the spectra, the ${H}\beta$ line is displaced to the longer wavelengths, but no synchronous variabilities were observed in other spectral lines (CII λ 6578.05 Å, λ 6582.88 Å and HeI λ 5875.72 Å) formed in deeper layers of the stellar atmosphere. In addition, the profiles of the ${H}\alpha$ and ${H}\beta$ lines have been analysed, as well as their relations with possible expansion, contraction and mixed conditions of the atmosphere of HD14134. We suggest that the observational evidence for the non-stationary atmosphere of HD14134 can be associated in part with the non-spherical stellar wind.

    • Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

      Liu Zhong-bao Song Wen-ai Zhang Jing Zhao Wen-juan

      More Details Abstract Fulltext PDF

      Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher’s Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

    • Ratio of the Core to the Extended Emissions in the Comoving Frame for Blazars

      Yun-Tian Li Shao-Yu Fu Huan-Jian Feng Si-Le He Chao Lin Jun-Hui Fan Denise Costantin Yu-Tao Zhang

      More Details Abstract Fulltext PDF

      In a two-component jet model, the emissions are the sum of the core and extended emissions: $S^{\mathrm{ob}}=S_{\mathrm{core}}^{\mathrm{ob}}+S_{\mathrm{ext}}^{\mathrm{ob}}$, with the core emissions, $S_{\mathrm{core}}^{\mathrm{ob}}= f S_{\mathrm{ext}}^{\mathrm{ob}}\delta ^{q}$ being a function of the Doppler factor $\delta$, the extended emission $S_{\mathrm{ext}}^{\mathrm{ob}}$, the jet type dependent factor q, and the ratio of the core to the extended emissions in the comoving frame, f. The f is an unobservable but important parameter. Following our previous work, we collect 65 blazars with available Doppler factor $\delta$, superluminal velocity $\beta _{\mathrm{app}}$, and core-dominance parameter, R, and calculated the ratio, f, and performed statistical analyses. We found that the ratio, f, in BL Lacs is on average larger than that in FSRQs. We suggest that the difference of the ratio f between FSRQs and BL Lacs is one of the possible reasons that cause the difference of other observed properties between them. We also find some significant correlations between $\log f$ and other parameters, including intrinsic (de-beamed) peak frequency, $\log \nu _{\mathrm{p}}^{\mathrm{in}}$, intrinsic polarization, $\log P^{\mathrm{in}}$, and core-dominance parameter, $\log R$, for the whole sample. In addition, we show that the ratio, f, can be estimated by R.

    • Peculiar Emission Line Generation from Ultra-Rapid Quasi-Periodic Oscillations of Exotic Astronomical Objects

      E. F. Borra

      More Details Abstract Fulltext PDF

      The purpose of this article is to alert astronomers, particularly those using spectroscopic surveys, to the fact that exotic astronomical objects (e.g. quasars or active galactic nuclei) that send ultra-rapid quasi periodic pulses of optical light would generate spectroscopic features that look like emission lines. This gives a simple technique to find quasi periodic pulses separated by times smaller than a nanosecond. One should look for emission lines that cannot be identified with known spectral lines in spectra. Such signals, generated by slower pulses, could also be found in the far infra-red, millimeter and radio regions, where they could be detected as objects unusually bright in a single narrow-band filter or channel. The outstanding interest of the technique comes from its simplicity so that it can be used to find ultra-rapid quasi-periodic oscillators in large astronomical surveys. A very small fraction of objects presently identified as Lyman α emitters that do not have other spectral features to confirm the Lyman $\alpha$ redshift, may possibly be quasi-periodic oscillators. However this is only a hypothesis that needs more observations for confirmation.

    • Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare

      P. Kishore C. Kathiravan R. Ramesh E. Ebenezer

      More Details Abstract Fulltext PDF

      We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range ${\gtrsim }0.13c–0.02c$ for the type V bursts, and nearly constant (${\approx }0.4c$) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel.

    • Preface

      A. S. Kiran Kumar

      More Details Abstract Fulltext PDF
    • Editorial

      S. Seetha

      More Details Abstract Fulltext PDF
    • AstroSat: From Inception to Realization and Launch

      P. C. Agrawal

      More Details Abstract Fulltext PDF

      The origin of the idea of AstroSat multi wavelength satellite mission and how it evolved over the next 15 years from a concept to the successful development of instruments for giving concrete shape to this mission, is recounted in this article. AstroSat is the outcome of intense deliberations in the Indian astronomy community leading to a consensus for a multi wavelength Observatory having broad spectral coverage over five decades in energy covering near-UV, far-UV, soft X-ray and hard X-ray bands. The multi wavelength observation capability of AstroSat with a suite of 4 co-aligned instruments and an X-ray sky monitor on a single satellite platform, imparts a unique character to this mission. AstroSat owes its realization to the collaborative efforts of the various ISRO centres, several Indian institutions, and a few institutions abroad which developed the 5 instruments and various sub systems of the satellite. AstroSat was launched on September 28, 2015 from India in a near equatorial 650 km circular orbit. The instruments are by and large working as planned and in the past 14 months more than 200 X-ray and UV sources have been studied with it. The important characteristics of AstroSat satellite and scientific instruments will be highlighted.

    • In-orbit Performance of UVIT and First Results

      S. N. Tandon J. B. Hutchings S. K. Ghosh A. Subramaniam G. Koshy V. Girish P. U. Kamath S. Kathiravan A. Kumar J. P. Lancelot P. K. Mahesh R. Mohan J. Murthy S. Nagabhushana A. K. Pati J. Postma N. Kameswara Rao K. Sankarasubramanian P. Sreekumar S. Sriram C. S. Stalin F. Sutaria Y. H. Sreedhar I. V. Barve C. Mondal S. Sahu

      More Details Abstract Fulltext PDF

      The performance of the ultraviolet telescope (UVIT) on-board AstroSat is reported. The performance in orbit is also compared with estimates made from the calibrations done on the ground. The sensitivity is found to be within ∼15% of the estimates, and the spatial resolution in the NUV is found to exceed significantly the design value of 1.8′′ and it is marginally better in the FUV. Images obtained from UVIT are presented to illustrate the details revealed by the high spatial resolution. The potential of multi-band observations in the ultraviolet with high spatial resolution is illustrated by some results.

    • Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

      K. P. Singh G. C. Stewart N. J. Westergaard S. Bhattacharayya S. Chandra V. R. Chitnis G. C. Dewangan A. T. Kothare I. M. Mirza K. Mukerjee V. Navalkar H. Shah A. F. Abbey A. P. Beardmore S. Kotak N. Kamble S. Vishwakarama D. P. Pathare V. M. Risbud J. P. Koyande T. Stevenson C. Bicknell T. Crawford G. Hansford G. Peters J. Sykes P. Agarwal M. Sebastian A. Rajarajan G. Nagesh S. Narendra M. Ramesh R. Rai K. H. Navalgund K. S. Sarma R. Pandiyan K. Subbarao T. Gupta N. Thakkar A. K. Singh A. Bajpai

      More Details Abstract Fulltext PDF

      The Soft X-ray focusing Telescope (SXT), India’s first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3–8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

    • Large Area X-Ray Proportional Counter (LAXPC) Instrument on AstroSat and Some Preliminary Results from its Performance in the Orbit

      P. C. Agrawal J. S. Yadav H. M. Antia Dhiraj Dedhia P. Shah Jai Verdhan Chauhan R. K. Manchanda V. R. Chitnis V. M. Gujar Tilak Katoch V. N. Kurhade P. Madhwani T. K. Manojkumar V. A. Nikam A. S. Pandya J. V. Parmar D. M. Pawar Jayashree Roy B. Paul Mayukh Pahari Ranjeev Misra M. H. Ravichandran K. Anilkumar C. C. Joseph K. H. Navalgund R. Pandiyan K. S. Sarma K. Subbarao

      More Details Abstract Fulltext PDF

      Large area X-ray propositional counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3–80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of ∼6000cm2 at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at ∼2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. In this article, we present salient features of the LAXPC detectors, their testing and characterization in the laboratory prior to launch and calibration in the orbit. Some preliminary results on timing and spectral characteristics of a few X-ray binaries and other type of sources, are briefly discussed to demonstrate that the LAXPC instrument is performing as planned in the orbit.

    • The Cadmium Zinc Telluride Imager on AstroSat

      V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna A. P. K. Kutty J. P. Malkar M. H. Patil Y. K. Arora S. Sinha P. Priya Essy Samuel S. Sreekumar P. Vinod N. P. S. Mithun S. V. Vadawale N. Vagshette K. H. Navalgund K. S. Sarma R. Pandiyan S. Seetha K. Subbarao

      More Details Abstract Fulltext PDF

      The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI’s namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17′ over a 4.6× 4.6 (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ∼100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

    • Early In-orbit Performance of Scanning Sky Monitor Onboard AstroSat

      M. C. Ramadevi B. T. Ravishankar N. Sitaramamurthy G. Meena Brajpal Singh Anand Jain Reena Yadav Anil Agarwal V. Chandra Babu Kumar Ankur Kushwaha S. Vaishali Nirmal Kumar Iyer Anuj Nandi Girish V. Vivek Kumar Agarwal S. Seetha Dipankar Bhattacharya K. Balaji Manoj Kumar Prashanth Kulshresta

      More Details Abstract Fulltext PDF

      We report the in-orbit performance of Scanning Sky Monitor (SSM) onboard AstroSat. The SSM operates in the energy range 2.5 to 10 keV and scans the sky to detect and locate transient X-ray sources. This information of any interesting phenomenon in the X-ray sky as observed by SSM is provided to the astronomical community for follow-up observations. Following the launch of AstroSat on 28th September, 2015, SSM was commissioned on October 12th, 2015. The first power ON of the instrument was with the standard X-ray source, Crab in the field-of-view. The first orbit data revealed the basic expected performance of one of the detectors of SSM, SSM1. Following this in the subsequent orbits, the other detectors were also powered ON to find them perform in good health. Quick checks of the data from the first few orbits revealed that the instrument performed with the expected angular resolution of 12’ × 2.5 and effective area in the energy range of interest. This paper discusses the instrument aspects along with few on-board results immediately after power ON.

    • Charged Particle Monitor on the AstroSat Mission

      A. R. Rao M. H. Patil Yash Bhargava Rakesh Khanna M. K. Hingar A. P. K. Kutty J. P. Malkar Rupal Basak S. Sreekumar Essy Samuel P. Priya P. Vinod D. Bhattacharya V. Bhalerao S. V. Vadawale N. P. S. Mithun R. Pandiyan K. Subbarao S. Seetha K. Suryanarayana Sarma

      More Details Abstract Fulltext PDF

      Charged Particle Monitor (CPM) on-board the Astrosat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.

    • AstroSat – Configuration and Realization

      K. H. Navalgund K. Suryanarayana Sarma Piyush Kumar Gaurav G. Nagesh M. Annadurai

      More Details Abstract Fulltext PDF

      AstroSat is India’s first space-based observatory satellite dedicated to astronomy. It has the capability to perform multi-wavelength and simultaneous observations of cosmic bodies in a wide band of wavelengths. This paper briefly summarizes the challenges faced in the configuration of AstroSat spacecraft, accommodation and sizing of its critical subsystems, their realization and testing of payloads and the integrated satellite.

    • Planning and Scheduling of Payloads of AstroSat During Initial and Normal Phase Observations

      R. Pandiyan S. V. Subbarao T. Nagamani Chaitra Rao N. Hari Prasad Rao Harish Joglekar Naresh Kumar Surya Ratna Prakash Dumpa Anshu Chauhan B. P. Dakshayani

      More Details Abstract Fulltext PDF

      On 28th September 2015, India launched its first astronomical space observatory AstroSat, successfully. AstroSat carried five astronomy payloads, namely, (i) Cadmium Zinc Telluride Imager (CZTI), (ii) Large Area X-ray Proportional Counter (LAXPC), (iii) Soft X-ray Telescope (SXT), (iv) Ultra Violet Imaging Telescope (UVIT) and (v) Scanning Sky Monitor (SSM) and therefore, has the capability to observe celestial objects in multi-wavelength. Four of the payloads are co-aligned along the positive roll axis of the spacecraft and the remaining one is placed along the positive yaw axis direction. All the payloads are sensitive to bright objects and specifically, require avoiding bright Sun within a safe zone of their bore axes in orbit. Further, there are other operational constraints both from spacecraft side and payloads side which are to be strictly enforced during operations. Even on-orbit spacecraft manoeuvres are constrained to about two of the axes in order to avoid bright Sun within this safe zone and a special constrained manoeuvre is exercised during manoeuvres. The planning and scheduling of the payloads during the Performance Verification (PV) phase was carried out in semi-autonomous/manual mode and a complete automation is exercised for normal phase/Guaranteed Time Observation (GuTO) operations. The process is found to be labour intensive and several operational software tools, encompassing spacecraft sub-systems, on-orbit, domain and environmental constraints, were built-in and interacted with the scheduling tool for appropriate decision-making and science scheduling. The procedural details of the complex scheduling of a multi-wavelength astronomy space observatory and their working in PV phase and in normal/GuTO phases are presented in this paper.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

© 2017 Indian Academy of Sciences, Bengaluru.