• Issue front cover thumbnail

      Volume 35, Issue 3

      September 2010,   pages  327-495

    • Clipboard: Neurosecretion in reproductive behaviour of leeches

      Nirmal Kumar Mishra

      More Details Fulltext PDF
    • Clipboard: Fatal attraction: bacteria exploit fungal heterokaryon incompatibility to obtain nutrients

      Subhadeep Chatterjee

      More Details Fulltext PDF
    • Commentary: Human papillomavirus and tar hypothesis for squamous cell cervical cancer

      Christina Bennett Allen E Kuhn Harry W Haverkos

      More Details Fulltext PDF
    • Alfred Russel Wallace deserves better

      David Lloyd Julian Wimpenny Alfred Venables

      More Details Abstract Fulltext PDF

      During 2009, while we were celebrating Charles Darwin and his The origin of species, sadly, little was said about the critical contribution of Alfred Russel Wallace (1823–1913) to the development of the theory of evolution. Like Darwin, he was a truly remarkable nineteenth century intellect and polymath and, according to a recent book by Roy Davies (The Darwin conspiracy: origins of a scientific crime), he has a stronger claim to the Theory of Evolution by Natural Selection than has Darwin. Here we present a critical comparison between the contributions of the two scientists. Sometimes referred to as ‘The other beetle-hunter’ and largely neglected for many decades, Wallace had a far greater experience of collecting and investigating animals and plants from their native habitats than had Darwin. He was furthermore much more than a pioneer biogeographer and evolutionary theorist, and also made contributions to anthropology, ethnography, geology, land reform and social issues. However, being a more modest, self-deprecating man than Darwin, and lacking the latter’s establishment connections, Wallace’s contribution to the theory of evolution was not given the recognition it deserved and he was undoubtedly shabbily treated at the time. It is time that Wallace’s relationship with Darwin is reconsidered in preparation for 2013, the centenary of Wallace’s death, and he should be recognized as at least an equal in the Wallace–Darwin theory of evolution.

    • INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms

      Sakshi Shrivastava Ch V Siva Kumar Reddy Sharmila S Mande

      More Details Abstract Fulltext PDF

      Genomic islands (GIs) are regions in the genome which are believed to have been acquired via horizontal gene transfer events and are thus likely to be compositionally distinct from the rest of the genome. Majority of the genes located in a GI encode a particular function. Depending on the genes they encode, GIs can be classified into various categories, such as `metabolic islands’, `symbiotic islands’, `resistance islands’, `pathogenicity islands’, etc. The computational process for GI detection is known and many algorithms for the same are available. We present a new method termed as Improved N-mer based Detection of Genomic Islands Using Sequence-clustering (INDeGenIUS) for the identification of GIs. This method was applied to 400 completely sequenced species belonging to proteobacteria. Based on the genes encoded in the identified GIs, the GIs were grouped into 6 categories: metabolic islands, symbiotic islands, resistance islands, secretion islands, pathogenicity islands and motility islands. Several new islands of interest which had previously been missed out by earlier algorithms were picked up as GIs by INDeGenIUS. The present algorithm has potential application in the identification of functionally relevant GIs in the large number of genomes that are being sequenced. Investigation of the predicted GIs in pathogens may lead to identification of potential drug/vaccine candidates.

    • Transcription pattern of UL131A-128 mRNA in clinical strains of human cytomegalovirus

      Zhengrong Sun Gaowei Ren Yanping Ma Ning Wang Yaohua Ji Ying Qi Mali Li Rong He Qiang Ruan

      More Details Abstract Fulltext PDF

      Human cytomegalovirus (HCMV) mRNA was obtained from human embryonic lung fibroblast cells infected by HCMV clinical strains from urine samples of infants at different kinetic periods. The cDNA of UL131A-128 mRNAs was amplified using reverse transcription-polymerase chain reaction (RT-PCR) and analysed by sequencing. Mean while, clones containing UL131A-128 transcripts in an HCMV cDNA library of a clinical strain were selected and sequenced. It was demonstrated that UL131A-128 mRNA was expressed with immediately early, early and late kinetics. Sequences obtained by RT-PCR showed that the UL131A gene consisted of two exons and the coding region of the UL130 gene was not interrupted by any intron in the region as reported earlier. However, the transcript of the UL128 gene showed two patterns: one pattern consisted of three exons as reported earlier; the other contained the three exons and also the first intron. Moreover, the above characteristics of UL131A-128 spliced transcripts were confirmed by the sequences of clones selected from the HCMV cDNA library. Our results demonstrated that the UL131A, UL130 and UL128 genes were transcribed with the 3′-coterminal, although the initiation points of their mRNA may be different. The variation in the transcripts found in our study indicated the complex nature of transcription of UL131A-128 genes in clinical strains of HCMV.

    • The ruthenium complex cis-(dichloro)tetrammineruthenium(III) chloride induces apoptosis and damages DNA in murine sarcoma 180 cells

      Aliny Pereira De Lima Flávia De Castro Pereira Cesar Augusto Sam Tiago Vilanova-Costa Alessandra De Santana Braga Barbosa Ribeiro Luiz Alfredo Pavanin Wagner Batista Dos Santos Elisângela De Paula Silveira-Lacerda

      More Details Abstract Fulltext PDF

      Ruthenium(III) complexes are increasingly attracting the interest of researchers due to their promising pharmacological properties. Recently, we reported that the cis-(dichloro)tetrammineruthenium(III) chloride compound has cytotoxic effects on murine sarcoma 180 (S-180) cells. In an effort to understand the mechanism responsible for their cytotoxicity, study we investigated the genotoxicity, cell cycle distribution and induction of apoptosis caused by cis-(dichloro)tetrammineruthenium(III) chloride in S-180 tumour cells. cis-(dichloro)tetrammineruthenium(III) chloride treatment induced significant DNA damage in S-180 cells, as detected by the alkaline comet assay. In the cell cycle analysis, cis-(dichloro)tetrammineruthenium(III) chloride caused an increase in the number of cells in G1 phase, accompanied by a decrease in the S and G2 phases after 24 h of treatment. In contrast, the cell cycle distribution of S-180 cells treated with cis-(dichloro)tetrammineruthenium(III) chloride for 48 h showed a concentration-dependent increase in the sub-G1 phase (indicating apoptosis), with a corresponding decrease in cells in the G1, S and G2 phases. In addition, cis-(dichloro)tetrammineruthenium(III) chloride treatment induced apoptosis in a time-dependent manner, as observed by the increased numbers of annexin V-positive cells. Taken together, these findings strongly demonstrate that DNA damage, cell cycle changes and apoptosis may correlate with the cytotoxic effects of cis-(dichloro)tetrammineruthenium(III) chloride on S-180 cells.

    • Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat

      Qing-Wei Zang Cai-Xiang Wang Xu-Yan Li Zhi-Ai Guo Rui-Lian Jing Jun Zhao Xiao-Ping Chang

      More Details Abstract Fulltext PDF

      Plant cysteine protease (CP) genes are induced by abiotic stresses such as drought, yet their functions remain largely unknown. We isolated the full-length cDNA encoding a Triticum aestivum CP gene, designated TaCP, from wheat by the rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that TaCP contains an open reading frame encoding a protein of 362 amino acids, which is 96% identical to barley cysteine protease HvSF42. The TaCP transcript level in wheat seedlings was upregulated during polyethylene glycol (PEG) stress, with a peak appearing around 12 h after treatment. TaCP expression level increased rapidly with NaCl treatment at 48 h. TaCP responded strongly to low temperature (4°C) treatment from 1 h post-treatment and reached a peak of about 40-fold at 72 h. However, it showed only a very slight response to abscisic acid (ABA). More than one copy of TaCP was present in each of the three genomes of hexaploid wheat and its diploid donors. TaCP fused with green fluorescent protein (GFP) was located in the plasma membrane of onion epidermis cells. Transgenic Arabidopsis plants overexpressing TaCP showed stronger drought tolerance and higher CP activity under water-stressed conditions than wild-type Arabidopsis plants. The results suggest that TaCP plays a role in tolerance to water deficit.

    • Designing exons for human olfactory receptor gene subfamilies using a mathematical paradigm

      Sk Sarif Hassan Pabitra Pal Choudhury Amita Pal R L Brahmachary Arunava Goswami

      More Details Abstract Fulltext PDF

      Ligands for only two human olfactory receptors are known. One of them, OR1D2, binds to Bourgeonal, a volatile chemical constituent of the fragrance of the mythical flower, Lily of the valley or Our Lady’s tears, Convallaria majalis (also the national flower of Finland). OR1D2, OR1D4 and OR1D5 are three full-length olfactory receptors present in an olfactory locus in the human genome. These receptors are more than 80% identical in DNA sequences and have 108 base pair mismatches among them. Apparently, these mismatch positions show no striking pattern using computer pattern recognition tools. In an attempt to find a mathematical rule in those mismatches, we find that an L-system generated sequence can be inserted into the OR1D2 subfamily-specific star model and novel full-length olfactory receptors can be generated. This remarkable mathematical principle could be utilized for making new subfamily olfactory receptor members from any olfactory receptor subfamily. The aroma and electronic nose industry might utilize this rule in future.

    • A new multi-wavelength model-based method for determination of enzyme kinetic parameters

      Mohammad-Hossein Sorouraddin Kaveh Amini Abdolhossein Naseri Javad Vallipour Jalal Hanaee Mohammad-Reza Rashidi

      More Details Abstract Fulltext PDF

      Lineweaver–Burk plot analysis is the most widely used method to determine enzyme kinetic parameters. In the spectrophotometric determination of enzyme activity using the Lineweaver–Burk plot, it is necessary to find a wavelength at which only the substrate or the product has absorbance without any spectroscopic interference of the other reaction components. Moreover, in this method, different initial concentrations of the substrate should be used to obtain the initial velocities required for Lineweaver–Burk plot analysis. In the present work, a multi-wavelength model-based method has been developed and validated to determine Michaelis–Menten constants for some enzyme reactions. In this method, a selective wavelength region and several experiments with different initial concentrations of the substrate are not required. The absorbance data of the kinetic assays are fitted by non-linear regression coupled to the numeric integration of the related differential equation. To indicate the applicability of the proposed method, the Michaelis–Menten constants for the oxidation of phenanthridine, 6-deoxypenciclovir and xanthine by molybdenum hydroxylases were determined using only a single initial concentration of the substrate, regardless of any spectral overlap.

    • Identification, tissue distribution and evaluation of brain neuropeptide Y gene expression in the Brazilian flounder Paralichthys orbignyanus

      Vinicius F Campos Tiago Collares João C Deschamps Fabiana K Seixas Odir A Dellagostin Carlos Frederico C Lanes Juliana Sandrini Luis Fernando Marins Marcelo Okamoto Luís A Sampaio Ricardo B Robaldo

      More Details Abstract Fulltext PDF

      Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in vertebrates, mammals and fish. However, the present knowledge about feeding behaviour in fish is still limited and based on studies in a few species. The Brazilian flounder Paralichthys orbignyanus is being considered for aquaculture, and it is important to understand the mechanisms regulating feeding in order to improve its performance in captivity. The objectives of this study were to clone NPY cDNA, evaluate the mRNA levels in different tissues of flounder, and also evaluate brain NPY expression to associate food intake with NPY expression levels. A 597 bp NPY cDNA was cloned from Brazilian flounder brain. NPY expression was detected in all the peripheral tissues analysed. No significant differences were observed in brain NPY gene expression over 24 h after food intake at a temperature of 15 ± 3°C. No correlation was observed among plasma glucose, total protein, cholesterol, triglycerides and NPY expression levels during this 24 h period. On the other hand, mRNA levels were increased after two weeks of fasting at elevated temperatures. Our results suggest that NPY mRNA levels in Brazilian flounder are affected by temperature.

    • Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis

      Thaisa Cristina Roat Carminda Da Cruz Landim

      More Details Abstract Fulltext PDF

      Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

    • Unusual radioresistance of nitrogen-fixing cultures of Anabaena strains

      Harinder Singh Tonina Fernandes Shree Kumar Apte

      More Details Abstract Fulltext PDF

      Nitrogen-fixing cultures of two species of the filamentous, heterocystous cyanobacterium Anabaena, namely Anabaena sp. strain L-31 and Anabaena torulosa were found to be highly tolerant to 60Co gamma radiation. No adverse effect on diazotrophic growth and metabolism were observed up to a dose of 5 kGy. At higher doses, radiation tolerance showed a correspondence with the inherent osmotolerance, with Anabaena L-31 being the more radiation tolerant as well as osmotolerant strain. In Anabaena L-31, exposure to 6 kGy of gamma rays resulted in genome disintegration, but did not reduce viability. Irradiation delayed heterocyst differentiation and nitrogen fixation, and marginally affected diazotrophic growth. All the affected parameters recovered after a short lag, without any discernible post-irradiation phenotype. The radiation tolerance of these Gram-negative photoautodiazotrophs is comparable with that of the adiazotrophic photoautotrophic cyanobacterium Chroococcidiopsis or adiazotrophic heterotroph Deinococcus radiodurans. This is the first report of extreme radioresistance in nitrogen-fixing Anabaena cultures.

    • Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis

      Ruoxue Liu Beibei Lü Xiaomeng Wang Chunling Zhang Shuping Zhang Jun Qian Lei Chen Haojie Shi Hansong Dong

      More Details Abstract Fulltext PDF

      The harpin protein HrpNEa induces Arabidopsis resistance to the green peach aphid by activating the ethylene signalling pathway and by recruiting EIN2, an essential regulator of ethylene signalling, for a defence response in the plant. We investigated 37 ethylene-inducible Arabidopsis transcription factor genes for their effects on the activation of ethylene signalling and insect defence. Twenty-eight of the 37 genes responded to both ethylene and HrpNEa, and showed either increased or inhibited transcription, while 18 genes showed increased transcription not only by ethylene but also by HrpNEa. In response to HrpNEa, transcription levels of 22 genes increased, with AtMYB44 being the most inducible, six genes had decreased transcript levels, and nine remained unchanged. When Arabidopsis mutants previously generated by mutagenicity at the 37 genes were surveyed, 24 mutants were similar to the wild type plant while four mutants were more resistant and nine mutants were more susceptible than wild type to aphid infestation. Aphid-susceptible mutants showed a greater susceptibility for atmyb15, atmyb38 and atmyb44, which were generated previously by T-DNA insertion into the exon region of AtMYB15 and the promoter regions of AtMYB38 and AtMYB44. The atmyb44 mutant was the most susceptible to aphid infestation and most compromised in induced resistance. Resistance accompanied the expression of PDF1.2, an ethylene signalling marker gene that requires EIN2 for transcription in wild type but not in atmyb15, atmyb38, and atmyb44, suggesting a disruption of ethylene signalling in the mutants. However, only atmyb44 incurred an abrogation in induced EIN2 expression, suggesting a close relationship between AtMYB44 and EIN2.

    • Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis

      Veeraputhiran Subbiah Karingu Janardhan Reddy

      More Details Abstract Fulltext PDF

      In order to investigate the interaction of the plant hormones ethylene, abscisic acid (ABA) and cytokinin in seed germination and early seedling development, we studied germination in ethylene-related mutants of Arabidopsis. Mutations in the genes etr1 and ein2, which reduce ethylene responses, showed increased dormancy and a delay in germination in comparison with wild type. Mutations in etr1, ein2 and ein6 also resulted in increased sensitivity to ABA with respect to inhibition of germination. Conversely, mutations in ctr1 and eto3, which lead to an increased ethylene response and overproduction of ethylene, respectively, decreased sensitivity to ABA during germination. Increased ABA sensitivity was also effected in wild type seeds by the presence during germination of AgNO3, an inhibitor of ethylene action. The addition of the cytokinin N-6 benzyl adenine (BA) reversed the increased sensitivity of ethylene-resistant mutants to ABA. The action of cytokinin in reversing increased ABA sensitivity of ethylene-resistant mutants also suggests that at least part of the action of cytokinin in promoting germination is independent of its role in stimulating ethylene production. These observations further extend the evidence in support of interaction between ethylene, ABA and cytokinin signalling in controlling seed germination and early seedling development in Arabidopsis.

    • Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

      Song Yu Chen Ligang Zhang Liping Yu Diqiu

      More Details Abstract Fulltext PDF

      Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

    • Hormonal regulation of gluconeogenic gene transcription in the liver

      Nirmala Yabaluri Murali D Bashyam

      More Details Abstract Fulltext PDF

      Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

    • Complex regulation of sister kinetochore orientation in meiosis-I

      Amit Bardhan

      More Details Abstract Fulltext PDF

      Kinetochores mediate chromosome movement during cell division by interacting with the spindle microtubules. Sexual reproduction necessitates the daunting task of reducing ploidy (number of chromosome sets) in the gametes, which depends upon the specialized properties of meiosis. Kinetochores have a central role in the reduction process. In this review, we discuss the complexity of this role of kinetochores in meiosis-I.

  • Journal of Biosciences | News

© 2017 Indian Academy of Sciences, Bengaluru.