• Issue front cover thumbnail

      Volume 34, Issue 1

      March 2009,   pages  1-159

    • Clipboard: Dissecting the genetics of cardiomyopathy in India: A tale of ten steps

      Partha P Majumder

      More Details Fulltext PDF
    • Classical embryology to molecular biology: a personal view of amphibian embryonic development

      Horst Grunz

      More Details Fulltext PDF
    • What history tells us XVI. A third pillar for molecular biology: Molecular embryology

      Michel Morange

      More Details Fulltext PDF
    • Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.

      V K Nigam A K Khandelwal R K Gothwal M K Mohan B Choudhury A S Vidyarthi P Ghosh

      More Details Abstract Fulltext PDF

      The biotransformation of acrylonitrile was investigated using thermophilic nitrilase produced from a new isolate Streptomyces sp. MTCC 7546 in both the free and immobilized state. Under optimal conditions, the enzyme converts nitriles to acids without the formation of amides. The whole cells of the isolate were immobilized in agar-agar and the beads so formed were evaluated for 25 cycles at 50°C. The enzyme showed a little loss of activity during reuse. Seventy-one per cent of 0.5 M acrylonitrile was converted to acid at 6 h of incubation at a very low density of immobilized cells, while 100% conversion was observed at 3 h by free cells.

    • Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease

      Tapas K Nandi Hridoy R Bairagya Bishnu P Mukhopadhyay K Sekar Dipankar Sukul Asim K Bera

      More Details Abstract Fulltext PDF

      The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

    • Immunization with a synthetic robustoxin derivative lacking disulphide bridges protects against a potentially lethal challenge with funnel-web spider (Atrax robustus) venom

      Alfio Comis Margaret Tyler Ewan Mylecharane Ian Spence Merlin Howden

      More Details Abstract Fulltext PDF

      The venom of male Atrax robustus spiders is potentially lethal to primates. These spiders have been responsible for a number of human deaths. Robustoxin is the lethal toxin in the venom. It is a highly cross-linked polypeptide that has 42 amino acid residues and four disulphide bridges. If these bridges are broken, the resulting polypeptide is nontoxic. Robustoxin was chemically synthesized with all of its eight cysteine residues protected with acetamidomethyl groups in order to avoid formation of disulphide bridges. The resulting derivative was co-polymerized with keyhole limpet haemocyanin. Two Macaca fascicularis monkeys were immunized with this conjugate. The monkeys were challenged, under anaesthesia, with a potentially lethal dose of male A. robustus crude venom. Both monkeys showed some minor symptoms of intoxication but recovered fully with no adverse after-effects. Immunization with the same immunogen, in the absence of keyhole limpet haemocyanin, did not protect a third monkey. The N-terminal 23 amino acid peptide derived from the sequence of robustoxin was synthesized and conjugated with ovalbumin. A fourth monkey was immunized with this conjugate. However, it was not protected against challenge. The implications of these results for the preparation of synthetic peptide vaccines are discussed.

    • Construction of an infectious cDNA clone of foot-and-mouth disease virus type O1BFS 1860 and its use in the preparation of candidate vaccine

      M Hema D Chandran S B Nagendrakumar M Madhanmohan V A Srinivasan

      More Details Abstract Fulltext PDF

      Foot-and-mouth disease virus (FMDV) serotype O is the most predominant among the endemic serotypes in India. A stable, full-length cDNA clone of FMDV type O1BFS 1860 preceded by a bacteriophage T7 polymerase promoter was assembled in a plasmid vector pGEMR-7Zf(–). An ∼8.2 kb PCR product was amplified from the cDNA clone and a full-length RNA was generated from it by in vitro transcription. Transfection of BHK-21 cells with the in vitro transcripts resulted in the production of infectious recombinant FMDV particles as evidenced by cytopathic effects (CPE). Further, characterization of the recombinant virus by immunofluorescence, microneutralization test (MNT), antigen ELISA, RT-PCR, plaque assay and electron microscopy revealed similarity to the parental strain. The immunogenicity of an oil-adjuvant vaccine prepared using the inactivated recombinant virus was tested in guinea pigs and cattle. Neutralizing antibodies were produced in both vaccinated guinea pigs and cattle. Vaccinated animals were protected on challenge. The results demonstrated that the recombinant virus was as stable and effective as the parental strain for the preparation of inactivated vaccine, suggesting the potential application of this strategy to make genetically engineered FMDV vaccines.

    • Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

      Axel Blau Tanja Neumann Christiane Ziegler Fabio Benfenati

      More Details Abstract Fulltext PDF

      An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

    • Molecular evolution of the E8 promoter in tomato and some of its relative wild species

      Lingxia Zhao Liya Lu Lida Zhang Aoxue Wang Ning Wang Zhuobin Liang Xiaowen Lu Kexuan Tang

      More Details Abstract Fulltext PDF

      The E8 gene is related to ethylene biosynthesis in plants. To explore the effect of the expression pattern of the E8 gene on different E8 promoters, the molecular evolution of E8 promoters was investigated. A total of 16 E8 promoters were cloned from 16 accessions of seven tomato species, and were further analysed. The results from 19 E8 promoters including three previously cloned E8 promoters (X13437, DQ317599 and AF515784) showed that the size of the E8 promoters varied from 2101 bp (LA2150) to 2256 bp (LA2192); their sequences shared 69.9% homology and the average A/T content was 74.9%. Slide-window analysis divided E8 promoters into three regions – A, B and C – and the sequence identity in these regions was 72.5%, 41.2% and 70.8%, respectively. By searching the cis-elements of E8 promoters in the PLACE database, mutant nucleotides were found in some functional elements, and deletions or insertions were also found in regions responsible for ethylene biosysnthesis (–1702 to –1274) and the negative effect region (–1253 to –936). Our results indicate that the size of the functional region for ethylene biosynthesis in the E8 promoter could be shortened from 429 bp to 113 bp (–1612 to –1500). The results of molecular evolution analysis showed that the 19 E8 promoters could be classified into four clade groups, which is basically consistent with evolution of the tomato genome. Southern blot analysis results showed that the copy number of E8 promoters in tomato and some other wild species changed from 1 to 4. Taken together, our study provides important information for further elucidating the E8 gene expression pattern in tomato, analysing functional elements in the E8 promoter and reconstructing the potent E8 promoter.

    • Genetic analysis of foot-and-mouth disease virus serotype A of Indian origin and detection of positive selection and recombination in leader protease- and capsid-coding regions

      S B Nagendrakumar M Madhanmohan P N Rangarajan V A Srinivasan

      More Details Abstract Fulltext PDF

      The leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups – Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (< 5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or convergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the Lpro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the Lpro (𝑃 < 0.05; 0.046*) and at aa 171 in the capsid protein VP1 (𝑃 < 0.01; 0.003**).

    • Large cryptic internal sequence repeats in protein structures from Homo sapiens

      R Sarani N A Udayaprakash R Subashini P Mridula T Yamane K Sekar

      More Details Abstract Fulltext PDF

      Amino acid sequences are known to constantly mutate and diverge unless there is a limiting condition that makes such a change deleterious. However, closer examination of the sequence and structure reveals that a few large, cryptic repeats are nevertheless sequentially conserved. This leads to the question of why only certain repeats are conserved at the sequence level. It would be interesting to find out if these sequences maintain their conservation at the three-dimensional structure level. They can play an active role in protein and nucleotide stability, thus not only ensuring proper functioning but also potentiating malfunction and disease. Therefore, insights into any aspect of the repeats – be it structure, function or evolution – would prove to be of some importance. This study aims to address the relationship between protein sequence and its three-dimensional structure, by examining if large cryptic sequence repeats have the same structure.

    • Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis

      Niladri Ganguly Suraj P Parihar

      More Details Abstract Fulltext PDF

      Human papillomavirus (HPV) is small, double-stranded DNA virus that infects mucosal and cutaneous epithelial tissue. HPV is sexually transmitted and the viral DNA replicates extrachromosomally. The virus is non-enveloped and has an icosahedral capsid. There are approximately 118 types of HPV, which are characterized as high-risk or low-risk types. High-risk HPVs cause malignant transformation while the low-risk ones cause benign warts and lesions. The expression of E6 and E7 is normally controlled during the normal viral life cycle when viral DNA replicates extrachromosomally. HPV E6 and E7 oncoproteins are overexpressed when the viral genome integrates into the host DNA. Deregulated overexpression of E6 and E7 oncoproteins can cause several changes in cellular pathways and functions leading to malignant transformation of cells and tumorigenesis. In this review, we focus on several cellular mechanisms and pathways that are altered in the presence of E6 and E7, the target proteins of E6 and E7 inside the host cell and how they contribute to the development of the transformed phenotype..

    • Tropospheric ozone as a fungal elicitor

      Paolo Zuccarini

      More Details Abstract Fulltext PDF

      Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens, i.e. it resembles fungal elicitors. This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review provides an overview of the implications of such a phenomenon for basic and applied research. After an introduction about the environmental implications of tropospheric ozone and plant responses to biotic stresses, the biochemistry of ozone stress is analysed, pointing out its similarities with plant responses to pathogens and its possible applications.

    • Neurospora as a model fungus for studies in cytogenetics and sexual biology at Stanford

      Namboori B Raju

      More Details Abstract Fulltext PDF

      Dodge’s early work (1927–1940) on Neurospora genetics and sexual biology inspired Beadle and Tatum at Stanford to use N. crassa for their landmark discovery that genes specify enzymes. Neurospora has since become a model organism for numerous genetic, cytogenetic, biochemical, molecular and population biology studies. Neurospora is haploid in the vegetative phase with a transient diploid sexual phase. Its meiotic cells (asci) are large, allowing easy examination of dividing nuclei and chromosomes under a light microscope. The haploid meiotic products are themselves the sexual progeny that grow into vegetative cultures, thus avoiding the cumbersome testcrosses and complex dominance–recessive relationships, as in diploid organisms. The Perkins’ laboratory at Stanford (1949–2007) played a pivotal role in advancing our knowledge of Neurospora genetics, sexual biology, cytogenetics and population biology. Since 1974, I have taken advantage of various chromosome-staining methods to examine ascus and ascospore development in wild type and in numerous mutant strains. In addition, I have used GFP-tagged genes to visualize the expression or silencing of unpaired genes in a post-transcriptional gene silencing process (meiotic silencing by unpaired DNA) that operates specifically during meiosis. The genome of N. crassa contains over 10 000 protein-coding genes. Gene knockouts or mutations in specific sequences may now be readily correlated with the observed cytological defects in the sexual stage, thus advancing our molecular understanding of complex processes during ascus and ascospore development.

  • Journal of Biosciences | News

© 2017 Indian Academy of Sciences, Bengaluru.